Objectifs du cours d’aujourd’hui

Programmation Orientée Objet (C++) : L’opjec_tif de ces quelques tra_ms_parents (_ast de vous rafraichir la
meémoire en rappelant les principaux points.

Synthése des concepts de 'orienté objets
Vous avez abordé jusqu’ici :

1. les bases de la programmation procédurale ;
Jamila Sam 2. les bases de la programmation orientée objets.

Laboratoire d'Intelligence Artificiel . ,
O e g eiete w |l nous reste a aborder quelques thémes

d’approfondissement : structures de données et «templates»
ainsi gu’un survol de la librairie standard

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
cpe cpe
= P'- L Programmation Orientée Objet — Synthése POO — 1/33 = P'- L Programmation Orientée Objet — Synthése POO — 2/33

Qu’avons nous vu en programmation ? Qu’avons nous vu en programmation ?

Synthese Synthese
programmer c’est décomposer une tache a automatiser en une
séquence d’instructions (traitements) et des données , . R N .
9 ( ) programmer c’est décomposer une tache a automatiser en une
operent St séquence d’instructions (traitements) et des données
Gaomen)
A Algorithme S.D.A.
influencent Traitements Données
Variables
en programmation orientée objets, on regroupe dans le méme Expressions & Opérateurs
objet les traitements et les données qui lui sont spécifiques Structures de contrdle
(principe d’encapsulation) Fonctions Portée
OBIET Chaines de caractéres
oot . Tableaux statiques
TR attributs | méthodes )
ABS \ Tableaux dynamiques
Interface Structures
(partie visible) Pointeurs
¥ Entrées/Sorties
Détails d’
OEPFL 202425 Implémentation OEPFL 202425
& Jean-Cédric Chappelier (partie interne/cachée) & Jean-Cédric Chappelier
l-Pl-L : o i ‘ l-Pl-L ) o i ‘
(=1 | Programmation Orientée Objet — Synthése POO — 3/33 (=1 ad Programmation Orientée Objet — Synthése POO — 3/33



Qu’avons nous vu en programmation ? FONDAMENTAUX

Fondamentaux

Synthese

en programmation orientée objets, on regroupe dans le méme
objet les traitements et les donneées qui lui sont spécifiques 1. déclarez avant d’utiliser

(principe d’encapsulation) » variables

Objet int 1;

vector<double> v;
> fonctions s prototype

double sin (double x);

bool cherche_valeur (Listechainee 1, Valeur v);
> classes = Attributs et prototypes des méthodes

Encapsulation et Abstraction
Classes

Héritage simple/multiple
Polymorphisme

Classes abstraites/virtuelles

Résolution des collisions de noms i 2. modularisez / décomposez / pensez « atomique » et
Traitements Données « objet »

Méthodes Attributs 2.1 conception (qu’est ce qu’on veut ?)

Constructeurs & Destructeurs Appels aux constructeurs 2.2 implémentation (comment ¢a se réalise ?)

Const des attributs (hérités) 2.3 syntaxe (comment ga s’écrit ?)

Virtuelles (pures) _ Statiques 2.4 tests (ou sont mes fautes, comment pourrais-je les tester ?)

Surcharge d’opérateurs(interne/externe)

Privés/protégés/publiques

©EPFL 2024-25

Samia sam Hérités/cachés ( : 3) Samiacam
& Jean-Cédric Cl & Jean-Cédric Chappelier
-pr-
E PF L Programmation Orientée Objet — Synthése POO — 3/33 = P'- L Programmation Orientée Objet — Synthése POO — 4/33
« fondamentaux » de la POO Pour reviser...
Fondamentaux 1. encapsulation Objet = attributs + méthodes
Méthode de
class Rectangle { révision
public:
double surface() { ... };

o > prendre les tableaux synthétiques des transparents 3 et 4
private: > prendre les fiches résumé

double hauteur; » et pour chacun des points, se demander si on sait :

double largeur; > de quoi ca parle ?

} . , . > ce que ¢a veut dire ?
Attributs et méthodes publiques s Interface de la classe > |'utiliser?
(abstraction) ol |
. iser sur n .
2. héritage .rg-js.e ocaliser sur les concepts o ) |
class RectangleColore : public Rectangle | Leg détails de synte}xed(corr}m?n;[]ga’secrl’f) peuvent etre en’swte
Couleur couleur; rapidement retrouvés dans la fiche résumé, si on sait ce qu'on

/)oY cherche (c’est-a-dire si on a le concept)

3. polymorphisme le choix du type se fait a I'exécution, en
fonction de la nature réelles des instances (typage

©EPFL 2024-25 dyn am |q u e) ©EPFL 2024-25
Jamila Sam JoR T . ¢z s . Jamila Sam
& Jean Geédric Ghapplier Ingrédients : Pointeurs/Références + méthodes virtuelles & Jean Geédric Chapplier
[ - P [ - L = P = L ; ienté i &
(=1 Programmation Orientée Objet — Synthése POO — 5/33 (=1 ad Programmation Orientée Objet — Synthése POO — 6/33



Synthese Un exemple concret

Méthode de
révision

sempleconcet  R@prenons I'un de nos exercices de séries. |l s’agit de :
définir une collection de figures géométriques

> polymorphisme et collections hétérogeénes

> héritage de containers (typiquement vector) Une figure peut étre un cercle, Un carre OU UN triangle
» méthodes const A chacune de ces formes est associée une méthode d’affichage
> classes virtuelles spécifique affiche ()

La collection sera implémentée au moyen d’une classe Dessin

La classe Dessin permettra notamment d’invoquer la bonne
fonction d’affichage pour chaque figure de la collection

ww COMMENT FAIRE ?

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

EPFL EPFL

Programmation Orientée Objet — Synthése POO — 7/33 Programmation Orientée Objet — Synthése POO — 8/33

Pensons Objet Affinons la description de nos classes

On nous demande :
d’'implémenter une collection, Dessin, de figures géométriques
Exemple concret Objet Figure Exemple concret
rz attributs :? et méthodes : affiche ()
w afficher la description d’'une Figure
Objet Dessin
= attribut : une « collection » de Figure ? et

Commencons par la classe Figure :
c’est plutdt ...« abstrait » :

des attributs concrets (rayon, coté, etc.) a afficher ne sont
spécifiables que pour des figures géométriques précises (carre,
triangle, etc.)

méthodes : affiche () de méme la méthode affiche va dépendre du type de Figure
w afficher les figures de la collection considéree
d'ou déja: . . . .
, Continuons donc a penser « objet » et « atomique »
class Figure {
void affiche () const; w= il nous faut aussi décrire des formes spécifiques de
Figures

bi
Ici des Cercles, des Carres etdes Triangles

class Dessin {
// une collection de Figures

= Pour ces types d’objets, on sait concretement quels sont les

cerrs ooz void affiche () const; o o2 attributs typiques et on a (au moins) une idée de comment les
& Jean-Cédric Chappelier } ; & Jean-Cédric Chappelier afflCher
c=PFL c=PFL

Programmation Orientée Objet — Synthése POO — 9/33 Programmation Orientée Objet — Synthése POO — 10/33



Affinons la description de nos classes (2)

Exemple concret

Exemple des Cercles:

class Cercle {
void affiche () const ({
cout << "Un cercle de rayon " << rayon << endl;
}
double rayon;

}i

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

—pr-
c=PrL Programmation Orientée Objet — Synthése POO — 11/33

La classe Cercle (2)

Il nous faut aussi des constructeurs/destructeurs

Exemple concret class Cercle {
public:
Cercle (double x = 0.0) // CONSTRUCTEUR PAR DEFAUT
: rayon (x) {
cout << "Et hop, un cercle de plus !" << endl;

}

// pas vraiment necessaire, mais pour l’exemple
Cercle (const Cercle& c)
: rayon(c.rayon) {
cout << "Et encore un cercle qui fait des petits !" << endl;

}

// pas vraiment necessaire non plus ici
~Cercle () { cout << "le dernier cercle ?" << endl; }

void affiche() const {
cout << "Un cercle de rayon " << rayon << endl;

}

private:
double rayon;
i

©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier

=PFL
=rT Programmation Orientée Objet — Synthése POO — 13/33

La classe Cercle

sempieconcet OPECIfions un peu plus complétement cette classe :
Tout d’abord respectons les principes d’'une bonne encapsulation :

Définissons proprement I'interface de la classe (i.e, ce qui doit
étre visible depuis I'extérieur de la classe et ce qui n'a pas besoin
de I'étre)

class Cercle {
public: //DROIT D’ACCES
void affiche () const {
cout << "Un cercle de rayon " << rayon << endl;
}
private: //DROIT D’ACCES
double rayon;
bi

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

—pr-
c=PrL Programmation Orientée Objet — Synthése POO — 12/33

La classe Cercle (3)

Ce n’est pas tout!

Nos Cercles sont des « spécialisations » possibles de Figure.
eempeconcret  |IS seront d’ailleurs manipulés dans notre collection comme des

Figures quelconques (polymorphisme)

e il faut donc que Cercle hérite de Figure :

class Cercle : public Figure {
public:
Cercle (double x = 0.0)
rayon (x) |
cout << "Et hop, un cercle de plus !" << endl;

}
private:
double rayon;
}i

ralivsa On fait pareil pour toutes les autres types de Figures, et on

Jamila Sam

e obtient ainsi les briques de base de notre implémentation

r-F)r-l_
= Programmation Orientée Objet — Synthése POO — 14/33



La classe Dessin

Une facon d’'implémenter notre collection hétérogéne consiste a
doter la classe Dessin d’'un attribut stockant (« encapsulant »)
une liste de de Figures (un tableau dynamique par exemple)

Exemple concret

question : Est-ce la meilleure facon de procéder ?

= Oui, si c’est comme cela qu’on le congoit (« un dessin
a/possede une collection de figures »).

Mais une autre vision est aussi possible : « un dessin est une
collection de figures »

s on fait alors hériter Dessin d'une classe container (vector
par exemple)

On bénéficie alors directement (« hérite ») des méthodes
existants pour les vector !! (constructeurs, destructeur,
push_back (), size (), etc.)

[mais attention le destructeur de vector n’est pas virtuel]

©EPFL 2024-25

Jamia Sam iw COMMENT FAIRE ?

& Jean-Cédric Chappelier

EFDE[_
=i Programmation Orientée Objet — Synthése POO — 15/33

Pointeurs et polymorphisme

Polymorphisme : Pointeurs/Références + méthodes virtuelles

Exemple concret

= hotre classe Dessin doit donc manipuler des pointeurs sur
les instances de Figures et non pas les instances
elles-mémes!

class Dessin : public vector<Figurex> { // POINTEURS !!
public:

void affiche () const {
cout << "Je contiens :" << endl;
for (auto figure : xthis) {
figure->affiche();

}

OFPFL 2024-25 Le premier ingrédient est désormais fourni!
#omoe s (mais attention aux classes contenant des pointeurs !)
c=PrL Programmation Orientée Objet — Synthése POO — 17 /33

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Héritage d’un container

On veut donc faire hériter Dessin d’'une classe vecteur de
Figures':

class Dessin : public vector<Figure> { //HERITAGE DE VECTOR
public:

void affiche () const {
cout << "Je contiens :" << endl;
for (auto figure : xthis) {
figure.affiche();
}
}
bi

Mais regardons notre fonction affiche de la classe Dessin...

On souhaite qu’elle invoque pour chaque figure, la méthode
d’affichage appropriée a la nature réelle de l'instance stockée.
= || est temps de se préoccuper un peu de polymorphisme!

Programmation Orientée Objet — Synthése POO — 16/33

Méthodes virtuelles

Deuxieme ingrédient : la fonction affiche de la classe Figure
doit étre virtuelle

class Figure {
virtual void affiche() const; // METHODE VIRTUELLE !

bi

Programmation Orientée Objet — Synthése POO — 18/33



Ajout d’une Figure

sempeconcet - LENONCE de I'exercice précise que I'on veut une méthode
ajouteFigure ajoutant a la collection la copie d’'une figure
passée en parametre.

class Dessin : public vector<Figurex*> {
public:

void ajouteFigure (const Figure& fig) {
push_back (fig.copie());
}
void affiche () const ({
cout << "Je contiens :" << endl;
for (auto figure : xthis) {
figure->affiche();

}

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-pr-
c=PFL Programmation Orientée Objet — Synthése POO — 19/33

La classe Figure

Exemple concret

Les méthodes de la classe Figure ont ceci de particulier que I'on
sait gu’elles doivent exister mais qu’on ne sait pas exactement
comment les coder

class Figure {

public:
virtual void affiche () const { ?2? }
virtual Figurex copie() const { ?22? }

}i

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

CPEL
= Programmation Orientée Objet — Synthése POO — 21/33

Ajout d’'une Figure (2)

Exemple concret

Une méthode copie doit donc étre fournie dans la classe
Figure':

class Figure {

public:
virtual void affiche () const;
// COPIE POLYMORPHIQUE :
virtual Figurex copie() const;

}i

copie doit aussi étre virtuelle pour les mémes raisons que
affiche

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-pr-
c=PFL Programmation Orientée Objet — Synthése POO — 20/ 33

La classe Figure

Au lieu de donner des définitions arbitraires a affiche et copie,
il faut les déclarer comme virtuelles pures.

Exemple concret

Elles n'ont alors pas de définition associée et la classe Figure
devient une classe abstraite

class Figure {

public:
// METHODES VIRTUELLES PURES :
virtual void affiche () const = 0;
virtual Figurex copie() const

Il
o
~.

bi

Ces méthodes ne seront définies que dans les sous-classes
« concrétes » de Figure

©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

CPEL
= Programmation Orientée Objet — Synthése POO — 22/ 33



Finalisation des classes

Exemple concret

Terminons une premiére version de nos classes :

il faut fournir les définitions concrétes de copie dans les
sous-classes dérivées de Figures

Exemple :
class Cercle : public Figure {
public:
Cerclex copie() { return new Cercle (xthis); }
bi
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
EFDE[_
=i Programmation Orientée Objet — Synthése POO — 23 /33

Méthodes const

Pour améliorer notre code, toutes les méthodes ne modifiant pas
les attributs de leurs classes ont été déclarées comme const

Exemple concret

C’est le cas de toutes les méthodes affiche et copie

Exemple :
class Figure {
public:
virtual void affiche () const= 0; // METHODE CONST
virtual Figurex copie() const = 0O;
virtual ~Figure() { cout << "Une figure de moins." << endl; J}

}i

== Meilleures spécification des intentions du programmeur,
contrbles syntaxiques supplémentaires possibles

On peut ensuite améliorer a souhait le codage de nos classes en

fournissant notamment des méthodes de copie profonde et des
oEPFL 202425 surcharges d’opérateurs (dont =), surtout la ou il y a des pointeurs
f;ne‘;—scaér?mc Chappelier (D essi 1’1) .

=PFL
=rT Programmation Orientée Objet — Synthése POO — 25 /33

Finalisation des classes (2)

Il faut aussi fournir des destructeurs a toutes classes pour
désallouer proprement la mémoire utilisée par notre collection :
: public vector<Figurex> {

Exemple concret class Dessin

public:
~Dessin () {
cout << "Le dessin s’efface..." << endl;
for (auto figure : xthis) delete figure;

clear();

}i
class Figure {
public:

virtual ~Figure() { cout << "Une figure de moins." << endl; }

}i
class Cercle : public Figure {

public:
~Cercle () { cout << "le dernier cercle ?" << endl; }};
ocPrL 202425 Pourquoi le destructeur de Figure doit-il étre virtuel ? (voir cours
& Jean-Cédric Chappelier H
— sur le polymorphisme)
1 Programmation Orientée Objet — Synthése POO — 24/33

Classes virtuelles

Passons & un autre sujet délicat, lié cette fois a I'héritage multiple.
Exemple concret

Supposons que nous ayons a coder une hiérarchie de classes

« en losange » se présentant comme suit :

Chaque instance de la classe D hérite, a priori, deux fois des
attributs et méthodes de 2

Examinons ce qui se passe lorsque I'on exécute le code suivant...

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

=PFL
=T Programmation Orientée Objet — Synthése POO — 26 /33



La classe A

Exemple concret

class A {
public:
int a;

A(int 1) : a(i)
{ cout<< "Creation de A" << endl; }

virtual ~A () {cout << "Destruction de A"<<endl; }

void affiche () const{
cout << "A: " << a <<endl;

bi

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Synthése POO — 27 /33

La classe D

Exemple concret

class D: public B, public C {
public:
int d;

D(int i, int j, int k, int 1)
:B(i,3), C(0,k), d(l)

{cout << "Creation de D" << endl;}

virtual ~D () {cout << "Destruction de D" << endl;}

void affiche () const({
C::affiche();
B::affiche();
cout<< "D: " << d << endl;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Synthése POO — 29/ 33

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Les classes B et C

class B: public A {

public:
int b;
B(int i, int j)
tA(1), b(3)

{cout<<"Creation de B" <<endl;}
virtual ~B() {cout << "Destruction de B" <<endl;}
void affiche () const({
A::affiche();
cout << "B: " << b <<endl;
}
i

class C: public A {
public:
int c;
C(int i, int j)
tA(L), c(J)
{cout << "Creation de C" << endl;}
virtual ~C () {cout << "Destruction de C"<< endl;}
void affiche () const{
A::affiche();
cout << "C: " << c <<endl;

Programmation Orientée Objet — Synthése POO — 28/ 33

Exécution

Si I'on exécute le petit main suivant :
int main ()
{
D x(1,2,3,4);
x.affiche () ;
return 0;
}
On obtient le résultat d’exécution suivant :

Création de
Création de
Création de
Création de
Création de
A: 0

c: 3
A: 1

B: 2

D: 4
Destruction de
Destruction de
Destruction de
Destruction de
Destruction de

QP wp

P w P QU

Programmation Orientée Objet — Synthése POO — 30/ 33



Classe A virtuelle Classe A virtuelle (2)

Pour éviter cette duplication, il faut déclarer la classe A comme

eempeconcret  Virtuelle. Ceci se fait en déclarant le lien d’héritage de B et C par sempeconce  POUr qUE ga fonctionne bien, il faut aussi faire un appel explicite
rapport & A comme virtuel : au constructeur de A dans la classe la plus dérivée (D) :
class B: public virtual A { // HERITAGE VIRTUEL class D: public B, public C {
public: public:
int b; int d;
B(int i, int j) D(int i, int j, int k, int 1)
(A(1), b(3) // APPEL AU CONSTRUCTEUR DE LA CLASSE VIRTUELLE
} :A(i)IB(in)I C(0,k), d(l)
}i e
}
class C: public virtual A { };
public:
int c;
¢ (izt 1, int J) w= les appels au constructeur de A dans les classes
FAld), e(3) intermédiaires sont alors ignorés et 'exécution est la
} suivante...
}i
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL Programmation Orientée Objet — Synthése POO — 31/33 EPFL Programmation Orientée Objet — Synthése POO — 32/ 33

Classe A virtuelle (3)

Exemple concret

Création de A
Création de B
Création de C
Création de D
A: 1
C: 3
A: 1
B: 2
D: 4

Destruction de
Destruction de
Destruction de
Destruction de

> W QO

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

[ - P [ - L
=rT Programmation Orientée Objet — Synthése POO — 33/ 33



	Objectifs
	Synthèse
	Fondamentaux
	Méthode de révision
	Exemple concret

