Objectifs
Synthése
Fondamentaux

Méthode de
revision

Exemple concret

(©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet (C++) :

Syntheése des concepts de l'orienté objets

Jamila Sam

Laboratoire d’Intelligence
Faculté 1&C

Artificielle

Programmation Orientée Objet — Synthése POO — 1/33

Objectifs du cours d’aujourd’hui

Lobjectif de ces quelques transparents est de vous rafraichir la
mémoire en rappelant les principaux points.

Vous avez abordé jusqu’ici :
1. les bases de la programmation procédurale ;
2. les bases de la programmation orientée objets.

= |l nous reste a aborder quelques themes
d’approfondissement : structures de données et «templates»
ainsi qu’un survol de la librairie standard

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO - 2/33

©« Qu’avons Nous vu en programmation ?

Synthése

Fondamentaux

programmer c’est décomposer une tache a automatiser en une
Méthode de 7 e . . ,
révision séquence d’instructions (traitements) et des données

Exemple concret opérenl sur

@ données

influencent

en programmation orientée objets, on regroupe dans le méme
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

OBIJET

attributs | méthodes

O™

st

Interface
(partie visible)

Détails d’
©EPFL 2024-25 2 .
Jamila Sam Implémentation
& Jean-Cédric Chappelier (partie interne/cachée)

Programmation Orientée Objet — Synthése POO — 3/33

Qu’avons nous vu en programmation ?

Synthése

programmer c’est décomposer une tache a automatiser en une
séquence d’instructions (traitements) et des données

Algorithme S.D.A.
Traitements Données
Variables

Expressions & Opérateurs
Structures de contréle
Fonctions Portée

Chaines de caractéres
Tableaux statiques
Tableaux dynamiques
Structures

Pointeurs
Entrées/Sorties

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO — 3/33

Qu’avons nous vu en programmation ?

Synthése

en programmation orientée objets, on regroupe dans le méme
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

Objet

Encapsulation et Abstraction
Classes

Héritage simple/multiple
Polymorphisme

Classes abstraites/virtuelles
Résolution des collisions de noms

Traitements Données
Méthodes Attributs
Constructeurs & Destructeurs Appels aux constructeurs
Const des attributs (hérités)
Virtuelles (pures) Statiques
Surcharge d’opérateurs(interne/externe)

Privés/protégés/publiques
Samiaam Hérités/cachés (: :)

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO — 3/33

FONDAMENTAUX

Fondamentaux

1. déclarez avant d’utiliser

» variables
int 1i;
vector<double> v;

> fonctions = prototype
double sin (double x);
bool cherche_valeur (Listechainee 1, Valeur vVv);

> classes 1 Attributs et prototypes des méthodes

2. modularisez / décomposez / pensez « atomique » et
« objet »
2.1 conception (qu’est ce qu’on veut?)
2.2 implémentation (comment ¢a se réalise ?)
2.3 syntaxe (comment c¢a s’écrit ?)

2.4 tests (ou sont mes fautes, comment pourrais-je les tester ?)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Synthése POO — 4 /33

« fondamentaux » de la POO

Fondamentaux 1. encapsulation Objet = attributs + méthodes
class Rectangle {
public:
double surface() { ... };
private:

double hauteur;
double largeur;

}

Attributs et méthodes publiques s Interface de la classe
(abstraction)

2. héritage

class RectangleColore : public Rectangle {
Couleur couleur;

/)Y

3. polymorphisme le choix du type se fait a I'exécution, en
fonction de la nature réelles des instances (typage
oepFL 202425 dynamique)

& Jean Cécric Chappel Ingrédients : Pointeurs/Références + méthodes virtuelles

-
E P'— L Programmation Orientée Objet — Synthése POO — 5/33

Pour réviser...

Méthode de
révision

» prendre les tableaux synthétiques des transparents 3 et 4
» prendre les fiches résumé
» et pour chacun des points, se demander si on sait :

» de quoi ¢a parle ?

> ce que ¢a veut dire ?

> l'utiliser?

= Se focaliser sur les concepts.

Les détails de syntaxe (comment ¢a s’écrit) peuvent étre ensuite
rapidement retrouvés dans la fiche résumé, si on sait ce qu’on
cherche (c’est-a-dire si on a le concept)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO — 6/33

Syntheése

Méthode de
révision

» polymorphisme et collections hétérogenes

> héritage de containers (typiquement vector)
» méthodes const

> classes virtuelles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Synthése POO — 7/33

Un exemple concret

sempeconcet REPrenons I'un de nos exercices de séries. |l s’agit de :

définir une collection de figures géométriques

Une figure peut étre un cercle,un carre ou un triangle

A chacune de ces formes est associée une méthode d’affichage
spécifique affiche ()
La collection sera implémentée au moyen d’une classe Dessin

La classe Dessin permettra notamment d’invoquer la bonne
fonction d’affichage pour chaque figure de la collection

ww COMMENT FAIRE ?

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO — 8/33

Pensons Objet

On nous demande :
d'implémenter une collection, Dessin, de figures géométriques
Exemple concret Obthigure
= attributs : ? et méthodes : affiche ()
w afficher la description d’'une Figure
Objet Dessin
e attribut : une « collection » de Figure ? et
méthodes : affiche ()
= afficher les figures de la collection
d'ou déja:
class Figure {
void affiche () const;

bi

class Dessin {
// une collection de Figures
©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier | -

cPFL

void affiche () const;

Programmation Orientée Objet — Synthése POO — 9/33

Affinons la description de nos classes

Commencgons par la classe Figure :
c’est plut6t ...« abstrait » :

Exemple concret

des attributs concrets (rayon, coté, etc.) a afficher ne sont
spécifiables que pour des figures géométriques précises (carre,
triangle, etc.)

de méme la méthode affiche va dépendre du type de Figure
considérée

Continuons donc a penser « objet » et « atomique »

w= il nous faut aussi décrire des formes spécifiques de
Figures

Icides Cercles, des Carres etdes Triangles

= Pour ces types d’objets, on sait concrétement quels sont les

—— attributs typiques et on a (au moins) une idée de comment les
 Soan-Gédic Chappolio afficher
=PrFL

Programmation Orientée Objet — Synthése POO — 10/33

Affinons la description de nos classes (2)

Exemple concret

Exemple des Cercles :

class Cercle {
void affiche () const {
cout << "Un cercle de rayon " << rayon << endl;
}
double rayon;
bi

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Synthése POO — 11/33

La classe Cercle

Bempleconcet OPECIfioNs un peu plus complétement cette classe :
Tout d’abord respectons les principes d’une bonne encapsulation :

Définissons proprement I'interface de la classe (i.e, ce qui doit
étre visible depuis I'extérieur de la classe et ce qui n'a pas besoin
de I'étre)

class Cercle {
public: //DROIT D’ACCES
void affiche() const ({
cout << "Un cercle de rayon " << rayon << endl;
}
private: //DROIT D’ACCES
double rayon;
}i

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO — 12/33

Exemple concret

(©EPFL 2024-25
Jamila Sam

La classe Cercle (2)

Il nous faut aussi des constructeurs/destructeurs

class Cercle {

public:
Cercle (double x = 0.0) // CONSTRUCTEUR PAR DEFAUT

rayon (x) {
cout << "Et hop, un cercle de plus !" << endl;

}

// pas vraiment necessaire, mais pour 1l’exemple
Cercle (const Cercle& c)

rayon (c.rayon) {

cout << "Et encore un cercle qui fait des petits

}

1" << endl;

// pas vraiment necessaire non plus ici
~Cercle() { cout << "le dernier cercle ?" << endl; }

void affiche() const ({
cout << "Un cercle de rayon " << rayon << endl;

private:
double rayon;
Vi

& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Synthése POO — 13/33

La classe Cercle (3)

Ce n’est pas tout!

Nos Cercles sont des « spécialisations » possibles de Figure.
sempeconcret |l seront d’ailleurs manipulés dans notre collection comme des

Figures quelconques (polymorphisme)

e il faut donc que Cercle hérite de Figure :

class Cercle : public Figure {

public:
Cercle (double x = 0.0)
rayon (x) {
cout << "Et hop, un cercle de plus !" << endl;
}
private:

double rayon;
Vi

Samiaam On fait pareil pour toutes les autres types de Figures, et on

&:'EI;;:IC_WI obtient ainsi les briques de base de notre implémentation

Programmation Orientée Objet — Synthése POO — 14/33

La classe Dessin

Une facon d'implémenter notre collection hétérogéne consiste a
doter la classe Dessin d'un attribut stockant (« encapsulant »)
une liste de de Figures (un tableau dynamique par exemple)

Exemple concret

question : Est-ce la meilleure facon de procéder ?

e Oui, si c’est comme cela qu’on le congoit (« un dessin
a/possede une collection de figures »).
Mais une autre vision est aussi possible : « un dessin est une
collection de figures »
= ON fait alors hériter Dessin d’une classe container (vector
par exemple)
On bénéficie alors directement (« hérite ») des méthodes
existants pour les vector ! (constructeurs, destructeur,
push_back (), size (), etc.)
[mais attention le destructeur de vector n’est pas virtuel]

©EPFL 2024-25

Jamia Sam rw COMMENT FAIRE ?

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO — 15/33

Héritage d’un container

On veut donc faire hériter Dessin d’une classe vecteur de

Figures:
class Dessin : public vector<Figure> { //HERITAGE DE VECTOR
public:

Exemple concret

void affiche () const ({
cout << "Je contiens :" << endl;
for (auto figure : xthis) {
figure.affiche();
}
}
bi

Mais regardons notre fonction affiche de la classe Dessin...

On souhaite qu’elle invoque pour chaque figure, la méthode
d’'affichage appropriée a la nature réelle de I'instance stockée.
ez |l est temps de se préoccuper un peu de polymorphisme!!

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO — 16/33

Pointeurs et polymorphisme

Polymorphisme : Pointeurs/Références + méthodes virtuelles

Exemple concret

e Notre classe Dessin doit donc manipuler des pointeurs sur
les instances de Figures et non pas les instances

elles-mémes !
class Dessin : public vector<Figurex> { // POINTEURS !!
public:
void affiche() const {
cout << "Je contiens :" << endl;

for (auto figure : *this) {
figure->affiche();

}

OEPFL 202425 Le premier ingrédient est désormais fourni!

Jamila Sam

semosseonle (mais attention aux classes contenant des pointeurs !)
E PF L Programmation Orientée Objet — Synthése POO — 17/33

Méthodes virtuelles

Exemple concret

Deuxieme ingrédient : la fonction affiche de la classe Figure
doit étre virtuelle

class Figure {
virtual void affiche() const; // METHODE VIRTUELLE !

bi

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Synthése POO — 18/33

Ajout d’une Figure

sempeconcet - LENONCE de I'exercice précise que I'on veut une méthode
ajouteFigure ajoutant a la collection la copie d’'une figure
passée en parametre.

class Dessin : public vector<Figurex> {
public:

void ajouteFigure (const Figure& fig) {
push_back (fig.copie());
}
void affiche () const {
cout << "Je contiens :" << endl;
for (auto figure : *this) {
figure->affiche();

}

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
cPFL Programmation Orientée Objet — Synthése POO — 19 /33

Ajout d’une Figure (2)

Exemple concret

Une méthode copie doit donc étre fournie dans la classe
Figure:

class Figure {

public:
virtual void affiche () const;
// COPIE POLYMORPHIQUE :
virtual Figurex copie() const;

copie doit aussi étre virtuelle pour les mémes raisons que
affiche

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Synthése POO — 20/33

La classe Figure

Exemple concret

Les méthodes de la classe Figure ont ceci de particulier que I'on
sait qu’elles doivent exister mais qu’on ne sait pas exactement
comment les coder

class Figure {

public:
virtual void affiche () const { 2?27?2 }
virtual Figurex copie() const { 2?27 }

bi

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Synthése POO — 21/33

La classe Figure

Au lieu de donner des définitions arbitraires a affiche et copie,
il faut les déclarer comme virtuelles pures.

Exemple concret

Elles n’ont alors pas de définition associée et la classe Figure
devient une classe abstraite

class Figure {

public:
// METHODES VIRTUELLES PURES :
virtual void affiche () const = 0;
virtual Figurex copie() const = 0;

Ces méthodes ne seront définies que dans les sous-classes
« concretes » de Figure

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Synthése POO — 22/33

Finalisation des classes

Exemple concret

Terminons une premiére version de nos classes :

il faut fournir les définitions concrétes de copie dans les
sous-classes dérivées de Figures

Exemple :

class Cercle : public Figure {
public:

Cerclex copie() { return new Cercle (xthis); }
}i

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Synthése POO — 23/33

Finalisation des classes (2)

Il faut aussi fournir des destructeurs a toutes classes pour
désallouer proprement la mémoire utilisée par notre collection :

: public vector<Figurex> {

Exemple concret class Dessin
public:
~Dessin () {
cout << "Le dessin s’efface..." << endl;
for (auto figure : xthis) delete figure;
clear () ;

}
bi
class Figure {
public:
virtual ~Figure() { cout << "Une figure de moins." << endl; }
}i
class Cercle : public Figure {
public:

~Cercle () { cout << "le dernier cercle ?" << endl; }};

Pourquoi le destructeur de Figure doit-il étre virtuel ? (voir cours

©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier H
sur le polymorphisme)
=PFL

Programmation Orientée Objet — Synthése POO — 24 /33

Méthodes const

Pour améliorer notre code, toutes les méthodes ne modifiant pas
les attributs de leurs classes ont été déclarées comme const

Exemple concret

C’est le cas de toutes les méthodes affiche et copie

Exemple :
class Figure {
public:
virtual void affiche () const= 0; // METHODE CONST
virtual Figurex copie() const = 0;
virtual ~Figure () { cout << "Une figure de moins." << endl;

bi

= Meilleures spécification des intentions du programmeuir,
contrbles syntaxiques supplémentaires possibles

On peut ensuite améliorer a souhait le codage de nos classes en

fournissant notamment des méthodes de copie profonde et des
cEPFL 202025 surcharges d’opérateurs (dont =), surtout la ou il y a des pointeurs
Jamila Sam

& Jean-Cédric Chappelier (D essi I’l) .

-
E P'— L Programmation Orientée Objet — Synthése POO — 25/33

Classes virtuelles

Passons a un autre sujet délicat, lié cette fois a I'héritage multiple.
Exemple concret

Supposons que nous ayons a coder une hiérarchie de classes

« en losange » se présentant comme suit :

Chaque instance de la classe D hérite, a priori, deux fois des
attributs et méthodes de 2

oEPFL 202025 Examinons ce qui se passe lorsque I'on exécute le code suivant...

Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthese POO — 26 /33

La classe A

Exemple concret

class A {
public:
int a;

A(int i) : a(i)
{ cout<< "Creation de A" << endl; }

virtual ~A() {cout << "Destruction de A"<<endl; }

void affiche () const{
cout << "A: " << a <<endl;

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Synthése POO — 27/33

Les classes B et C

class B: public A {
public:
Exemple concret int b;
B(int i, int 7J)
tA(1), b(J)
{cout<<"Creation de B" <<endl;}
virtual ~B() {cout << "Destruction de B" <<endl;}
void affiche () const{
A::affiche();
cout << "B: " << b <<endl;
}
}i

class C: public A ({

public:
int c;
C(int i, int j)
tA(L), c(3)

{cout << "Creation de C" << endl;}
virtual ~C () {cout << "Destruction de C"<< endl;}
void affiche() const({

A::affiche();

cout << "C: " << c <<endl;

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Synthése POO — 28/33

La classe D

Exemple concret

class D: public B, public C {
public:
int d;

D(int i, int Jj, int k, int 1)
:B(i,3), C(0,k), d(1)
{cout << "Creation de D" << endl;}

virtual ~D () {cout << "Destruction de D" << endl;}

void affiche () const({
C::affiche();
B::affiche();
cout<< "D: " << d << endl;

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Synthése POO — 29/33

Exécution

Si 'on exécute le petit main suivant :
int main ()
Exemple concret {
D x(1,2,3,4);
x.affiche();
return 0;

}
On obtient le résultat d’exécution suivant :

Création de

Création de

Création de

Création de

Création de

A: 0

C: 3

A: 1

B: 2

D: 4

Destruction de

Destruction de

Destruction de
©EPFL 2024-25 Destruction de

Jamila Sam

& Jean-Cédric Chappelier Destruction de

U QP wP

P WY OU

-
=PFL Programmation Orientée Objet — Synthése POO — 30 /33

Classe A virtuelle

Pour éviter cette duplication, il faut déclarer la classe A comme
virtuelle. Ceci se fait en déclarant le lien d’héritage de B et C par

rapport a A comme virtuel :
class B: public virtual A { // HERITAGE VIRTUEL

Exemple concret

public:
int b;
B(int i, int j)
tA(L), b(J)
}
bi
class C: public virtual A {
public:
int c;
C(int i, int 9j)
tA(1), c(3)
}
bi

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Synthése POO — 31/33

Classe A virtuelle (2)

Pour que ¢a fonctionne bien, il faut aussi faire un appel explicite
au constructeur de 2 dans la classe la plus dérivée (D) :
class D: public B, public C {
public:
int d;
D(int i, int j, int k, int 1)
// APPEL AU CONSTRUCTEUR DE LA CLASSE VIRTUELLE
:A(i),B(i,3), C(0,k), d(1)

Exemple concret

}
}i

wr les appels au constructeur de A dans les classes
intermédiaires sont alors ignorés et I'exécution est la
suivante...

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Synthése POO — 32/33

Exemple concret

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Classe A virtuelle (3)

Création de
Création de
Création de
Création de
A: 1
3
1
2
4
Destruction
Destruction
Destruction
Destruction

o w > QO

o Q w @

de
de
de
de

> w Qo

Programmation Orientée Objet — Synthése POO — 33 /33

	Objectifs
	Synthèse
	Fondamentaux
	Méthode de révision
	Exemple concret

