
Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation Orientée Objet (C++) :

Synthèse des concepts de l’orienté objets

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

Programmation Orientée Objet – Synthèse POO – 1 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Objectifs du cours d’aujourd’hui

L’objectif de ces quelques transparents est de vous rafraîchir la
mémoire en rappelant les principaux points.

Vous avez abordé jusqu’ici :
1. les bases de la programmation procédurale ;
2. les bases de la programmation orientée objets.

☞ Il nous reste à aborder quelques thèmes
d’approfondissement : structures de données et «templates»
ainsi qu’un survol de la librairie standard

Programmation Orientée Objet – Synthèse POO – 2 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Qu’avons nous vu en programmation?
programmer c’est décomposer une tâche à automatiser en une
séquence d’instructions (traitements) et des données

traitements données

influencent

opèrent sur

en programmation orientée objets, on regroupe dans le même
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

Détails d’
Implémentation

(partie interne/cachée)

Interface
(partie visible)

OBJET
attributs méthodes

(vide)

AB
STR

AC
TIO

N

Programmation Orientée Objet – Synthèse POO – 3 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Qu’avons nous vu en programmation?

programmer c’est décomposer une tâche à automatiser en une
séquence d’instructions (traitements) et des données

Algorithme S.D.A.
Traitements Données

Variables
Expressions & Opérateurs
Structures de contrôle
Fonctions Portée

Chaînes de caractères
Tableaux statiques
Tableaux dynamiques
Structures
Pointeurs

Entrées/Sorties

Programmation Orientée Objet – Synthèse POO – 3 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Qu’avons nous vu en programmation?

en programmation orientée objets, on regroupe dans le même
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

Objet
Encapsulation et Abstraction
Classes
Héritage simple/multiple
Polymorphisme
Classes abstraites/virtuelles
Résolution des collisions de noms

Traitements Données
Méthodes Attributs
Constructeurs & Destructeurs Appels aux constructeurs
Const des attributs (hérités)
Virtuelles (pures) Statiques
Surcharge d’opérateurs(interne/externe)

Privés/protégés/publiques
Hérités/cachés (: :)

Programmation Orientée Objet – Synthèse POO – 3 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

FONDAMENTAUX

1. déclarez avant d’utiliser
▶ variables

int i;
vector<double> v;

▶ fonctions ☞ prototype
double sin(double x);
bool cherche_valeur(Listechainee l, Valeur v);

▶ classes ☞ Attributs et prototypes des méthodes

2. modularisez / décomposez / pensez « atomique » et
« objet »
2.1 conception (qu’est ce qu’on veut?)
2.2 implémentation (comment ça se réalise?)
2.3 syntaxe (comment ça s’écrit ?)
2.4 tests (où sont mes fautes, comment pourrais-je les tester?)

Programmation Orientée Objet – Synthèse POO – 4 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

« fondamentaux » de la POO
1. encapsulation Objet = attributs + méthodes

class Rectangle {
public:

double surface() { ... };
...

private:
double hauteur;
double largeur;

}

Attributs et méthodes publiques ☞ Interface de la classe
(abstraction)

2. héritage
class RectangleColore : public Rectangle {

Couleur couleur;
//...};

3. polymorphisme le choix du type se fait à l’exécution, en
fonction de la nature réelles des instances (typage
dynamique)
Ingrédients : Pointeurs/Références + méthodes virtuelles

Programmation Orientée Objet – Synthèse POO – 5 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pour réviser...

▶ prendre les tableaux synthétiques des transparents 3 et 4
▶ prendre les fiches résumé
▶ et pour chacun des points, se demander si on sait :

▶ de quoi ça parle?
▶ ce que ça veut dire?
▶ l’utiliser?

☞ se focaliser sur les concepts.
Les détails de syntaxe (comment ça s’écrit) peuvent être ensuite
rapidement retrouvés dans la fiche résumé, si on sait ce qu’on
cherche (c’est-à-dire si on a le concept)

Programmation Orientée Objet – Synthèse POO – 6 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Synthèse

▶ polymorphisme et collections hétérogènes
▶ héritage de containers (typiquement vector)
▶ méthodes const
▶ classes virtuelles

Programmation Orientée Objet – Synthèse POO – 7 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Un exemple concret

Reprenons l’un de nos exercices de séries. Il s’agit de :

définir une collection de figures géométriques

Une figure peut être un cercle, un carre ou un triangle

À chacune de ces formes est associée une méthode d’affichage
spécifique affiche()

La collection sera implémentée au moyen d’une classe Dessin

La classe Dessin permettra notamment d’invoquer la bonne
fonction d’affichage pour chaque figure de la collection

☞ COMMENT FAIRE?

Programmation Orientée Objet – Synthèse POO – 8 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pensons Objet
On nous demande :

d’implémenter une collection, Dessin, de figures géométriques
Objet Figure

☞ attributs : ? et méthodes : affiche()
☞ afficher la description d’une Figure

Objet Dessin
☞ attribut : une « collection » de Figure? et
méthodes : affiche()
☞ afficher les figures de la collection

d’où déjà :
class Figure {

...
void affiche () const;
...

};

class Dessin {
// une collection de Figures
...
void affiche () const;

};

Programmation Orientée Objet – Synthèse POO – 9 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Affinons la description de nos classes

Commençons par la classe Figure :
c’est plutôt ...« abstrait » :

des attributs concrets (rayon, coté, etc.) à afficher ne sont
spécifiables que pour des figures géométriques précises (carre,
triangle, etc.)

de même la méthode affiche va dépendre du type de Figure
considérée

Continuons donc à penser « objet » et « atomique »

☞ il nous faut aussi décrire des formes spécifiques de
Figures

Ici des Cercles, des Carres et des Triangles

☞ Pour ces types d’objets, on sait concrètement quels sont les
attributs typiques et on a (au moins) une idée de comment les
afficher

Programmation Orientée Objet – Synthèse POO – 10 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Affinons la description de nos classes (2)

Exemple des Cercles :

class Cercle {
void affiche() const {
cout << "Un cercle de rayon " << rayon << endl;

}
double rayon;

};

Programmation Orientée Objet – Synthèse POO – 11 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

La classe Cercle

Spécifions un peu plus complètement cette classe :

Tout d’abord respectons les principes d’une bonne encapsulation :

Définissons proprement l’interface de la classe (i.e, ce qui doit
être visible depuis l’extérieur de la classe et ce qui n’a pas besoin
de l’être)

class Cercle {
public: //DROIT D’ACCES

void affiche() const {
cout << "Un cercle de rayon " << rayon << endl;

}
private: //DROIT D’ACCES
double rayon;

};

Programmation Orientée Objet – Synthèse POO – 12 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

La classe Cercle (2)

Il nous faut aussi des constructeurs/destructeurs
class Cercle {
public:

Cercle(double x = 0.0) // CONSTRUCTEUR PAR DEFAUT
: rayon(x) {
cout << "Et hop, un cercle de plus !" << endl;

}

// pas vraiment necessaire, mais pour l’exemple
Cercle(const Cercle& c)
: rayon(c.rayon) {
cout << "Et encore un cercle qui fait des petits !" << endl;

}

// pas vraiment necessaire non plus ici
~Cercle() { cout << "le dernier cercle ?" << endl; }

void affiche() const {
cout << "Un cercle de rayon " << rayon << endl;

}

private:
double rayon;

};

Programmation Orientée Objet – Synthèse POO – 13 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

La classe Cercle (3)
Ce n’est pas tout !
Nos Cercles sont des « spécialisations » possibles de Figure.
Ils seront d’ailleurs manipulés dans notre collection comme des
Figures quelconques (polymorphisme)

☞ il faut donc que Cercle hérite de Figure :

class Cercle : public Figure {
public:
Cercle(double x = 0.0)
: rayon(x) {

cout << "Et hop, un cercle de plus !" << endl;
}
...
private:
double rayon;

};

On fait pareil pour toutes les autres types de Figures, et on
obtient ainsi les briques de base de notre implémentation

Programmation Orientée Objet – Synthèse POO – 14 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

La classe Dessin

Une façon d’implémenter notre collection hétérogène consiste à
doter la classe Dessin d’un attribut stockant (« encapsulant »)
une liste de de Figures (un tableau dynamique par exemple)

question : Est-ce la meilleure façon de procéder?

☞ Oui, si c’est comme cela qu’on le conçoit (« un dessin
a/possède une collection de figures »).

Mais une autre vision est aussi possible : « un dessin est une
collection de figures »

☞ on fait alors hériter Dessin d’une classe container (vector
par exemple)

On bénéficie alors directement (« hérite ») des méthodes
existants pour les vector ! ! (constructeurs, destructeur,
push_back(), size(), etc.)
[mais attention le destructeur de vector n’est pas virtuel]

☞ COMMENT FAIRE?

Programmation Orientée Objet – Synthèse POO – 15 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Héritage d’un container

On veut donc faire hériter Dessin d’une classe vecteur de
Figures :
class Dessin : public vector<Figure> { //HERITAGE DE VECTOR
public:

...
void affiche() const {
cout << "Je contiens :" << endl;
for (auto figure : *this) {
figure.affiche();

}
}

};

Mais regardons notre fonction affiche de la classe Dessin...

On souhaite qu’elle invoque pour chaque figure, la méthode
d’affichage appropriée à la nature réelle de l’instance stockée.
☞ Il est temps de se préoccuper un peu de polymorphisme !

Programmation Orientée Objet – Synthèse POO – 16 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pointeurs et polymorphisme

Polymorphisme : Pointeurs/Références + méthodes virtuelles

☞ notre classe Dessin doit donc manipuler des pointeurs sur
les instances de Figures et non pas les instances
elles-mêmes !

class Dessin : public vector<Figure*> { // POINTEURS !!
public:
...
void affiche() const {
cout << "Je contiens :" << endl;
for (auto figure : *this) {
figure->affiche();

}
}

};

Le premier ingrédient est désormais fourni !
(mais attention aux classes contenant des pointeurs !)

Programmation Orientée Objet – Synthèse POO – 17 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Méthodes virtuelles

Deuxième ingrédient : la fonction affiche de la classe Figure
doit être virtuelle

class Figure {
...
virtual void affiche() const; // METHODE VIRTUELLE !
...

};

Programmation Orientée Objet – Synthèse POO – 18 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Ajout d’une Figure

L’énoncé de l’exercice précise que l’on veut une méthode
ajouteFigure ajoutant à la collection la copie d’une figure
passée en paramètre.

class Dessin : public vector<Figure*> {
public:

void ajouteFigure(const Figure& fig) {
push_back(fig.copie());

}
void affiche() const {

cout << "Je contiens :" << endl;
for (auto figure : *this) {
figure->affiche();

}
}

};

Programmation Orientée Objet – Synthèse POO – 19 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Ajout d’une Figure (2)

Une méthode copie doit donc être fournie dans la classe
Figure :

class Figure {
public:

virtual void affiche () const;
// COPIE POLYMORPHIQUE :
virtual Figure* copie() const;

..
};

copie doit aussi être virtuelle pour les mêmes raisons que
affiche

Programmation Orientée Objet – Synthèse POO – 20 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

La classe Figure

Les méthodes de la classe Figure ont ceci de particulier que l’on
sait qu’elles doivent exister mais qu’on ne sait pas exactement
comment les coder

class Figure {
public:

virtual void affiche () const { ??? }
virtual Figure* copie() const { ??? }

..
};

Programmation Orientée Objet – Synthèse POO – 21 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

La classe Figure

Au lieu de donner des définitions arbitraires à affiche et copie,
il faut les déclarer comme virtuelles pures.

Elles n’ont alors pas de définition associée et la classe Figure
devient une classe abstraite

class Figure {
public:

// METHODES VIRTUELLES PURES :
virtual void affiche () const = 0;
virtual Figure* copie() const = 0;

...
};

Ces méthodes ne seront définies que dans les sous-classes
« concrètes » de Figure

Programmation Orientée Objet – Synthèse POO – 22 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Finalisation des classes

Terminons une première version de nos classes :

il faut fournir les définitions concrètes de copie dans les
sous-classes dérivées de Figures

Exemple :

class Cercle : public Figure {
public:
...
Cercle* copie() { return new Cercle(*this); }
};

Programmation Orientée Objet – Synthèse POO – 23 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Finalisation des classes (2)
Il faut aussi fournir des destructeurs à toutes classes pour
désallouer proprement la mémoire utilisée par notre collection :
class Dessin : public vector<Figure*> {
public:

~Dessin() {
cout << "Le dessin s’efface..." << endl;
for (auto figure : *this) delete figure;

clear();
}

...
};
class Figure {
public:

...
virtual ~Figure() { cout << "Une figure de moins." << endl; }

};
class Cercle : public Figure {
public:

...
~Cercle() { cout << "le dernier cercle ?" << endl; }};

Pourquoi le destructeur de Figure doit-il être virtuel ? (voir cours
sur le polymorphisme)

Programmation Orientée Objet – Synthèse POO – 24 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Méthodes const

Pour améliorer notre code, toutes les méthodes ne modifiant pas
les attributs de leurs classes ont été déclarées comme const

C’est le cas de toutes les méthodes affiche et copie

Exemple :

class Figure {
public:

virtual void affiche () const= 0; // METHODE CONST
virtual Figure* copie() const = 0;
virtual ~Figure() { cout << "Une figure de moins." << endl; }

};

☞ Meilleures spécification des intentions du programmeur,
contrôles syntaxiques supplémentaires possibles

On peut ensuite améliorer à souhait le codage de nos classes en
fournissant notamment des méthodes de copie profonde et des
surcharges d’opérateurs (dont =), surtout là où il y a des pointeurs
(Dessin).

Programmation Orientée Objet – Synthèse POO – 25 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Classes virtuelles

Passons à un autre sujet délicat, lié cette fois à l’héritage multiple.

Supposons que nous ayons à coder une hiérarchie de classes
« en losange » se présentant comme suit :

A

B C

D

Chaque instance de la classe D hérite, a priori, deux fois des
attributs et méthodes de A

Examinons ce qui se passe lorsque l’on exécute le code suivant...

Programmation Orientée Objet – Synthèse POO – 26 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

La classe A

class A {
public:
int a;

A(int i) : a(i)
{ cout<< "Creation de A" << endl; }

virtual ~A() {cout << "Destruction de A"<<endl; }

void affiche() const{
cout << "A: " << a <<endl;

}
};

Programmation Orientée Objet – Synthèse POO – 27 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Les classes B et C

class B: public A {
public:
int b;
B(int i, int j)

:A(i), b(j)
{cout<<"Creation de B" <<endl;}
virtual ~B(){cout << "Destruction de B" <<endl;}
void affiche() const{

A::affiche();
cout << "B: " << b <<endl;

}
};

class C: public A {
public:
int c;
C(int i, int j)

:A(i), c(j)
{cout << "Creation de C" << endl;}
virtual ~C(){cout << "Destruction de C"<< endl;}
void affiche() const{

A::affiche();
cout << "C: " << c <<endl;

}
};

Programmation Orientée Objet – Synthèse POO – 28 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

La classe D

class D: public B, public C {
public:

int d;

D(int i, int j, int k, int l)
:B(i,j), C(0,k), d(l)

{cout << "Creation de D" << endl;}

virtual ~D(){cout << "Destruction de D" << endl;}

void affiche() const{
C::affiche();
B::affiche();
cout<< "D: " << d << endl;

}
};

Programmation Orientée Objet – Synthèse POO – 29 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exécution
Si l’on exécute le petit main suivant :
int main ()
{

D x(1,2,3,4);
x.affiche();
return 0;

}

On obtient le résultat d’exécution suivant :
Création de A
Création de B
Création de A
Création de C
Création de D
A: 0
C: 3
A: 1
B: 2
D: 4
Destruction de D
Destruction de C
Destruction de A
Destruction de B
Destruction de A

Programmation Orientée Objet – Synthèse POO – 30 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Classe A virtuelle

Pour éviter cette duplication, il faut déclarer la classe A comme
virtuelle. Ceci se fait en déclarant le lien d’héritage de B et C par
rapport à A comme virtuel :
class B: public virtual A { // HERITAGE VIRTUEL
public:

int b;
B(int i, int j)

:A(i), b(j)
...

}
};

class C: public virtual A {
public:

int c;
C(int i, int j)

:A(i), c(j)
....
}

};

Programmation Orientée Objet – Synthèse POO – 31 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Classe A virtuelle (2)

Pour que ça fonctionne bien, il faut aussi faire un appel explicite
au constructeur de A dans la classe la plus dérivée (D) :
class D: public B, public C {
public:
int d;
D(int i, int j, int k, int l)

// APPEL AU CONSTRUCTEUR DE LA CLASSE VIRTUELLE
:A(i),B(i,j), C(0,k), d(l)

...
}

};

☞ les appels au constructeur de A dans les classes
intermédiaires sont alors ignorés et l’exécution est la
suivante...

Programmation Orientée Objet – Synthèse POO – 32 / 33

Objectifs

Synthèse

Fondamentaux

Méthode de
révision

Exemple concret

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Classe A virtuelle (3)

Création de A
Création de B
Création de C
Création de D
A: 1
C: 3
A: 1
B: 2
D: 4
Destruction de D
Destruction de C
Destruction de B
Destruction de A

Programmation Orientée Objet – Synthèse POO – 33 / 33

	Objectifs
	Synthèse
	Fondamentaux
	Méthode de révision
	Exemple concret

