
Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation Orientée Objet (C++) :

Librairies standards

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 1 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Objectifs du cours d’aujourd’hui

L’objectif du cours d’aujourd’hui est de vous présenter
(sommairement) un certains nombre d’outils standards existant
en C++

Le but ici n’est pas d’être exhaustif, mais simplement de vous :
▶ informer de l’existence des principaux outils
▶ faire prendre conscience d’aller lire/chercher dans la

documentation les éléments qui peuvent vous être utiles

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 2 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Bibliothèque standard

La bibliothèque standard (d’outils) C++ facilite la programmation
et permet de la rendre plus efficace, si tant est que l’on
connaisse bien les outils qu’elle fournit.

Cette bibliothèque est cependant vaste et complexe, mais elle
peut dans la plupart des cas s’utiliser de façon très simple,
facilitant ainsi la réutilisation des structures de données abstraites
et des algorithmes sophistiqués qu’elle contient.

La bibliothèque standard est formée de 79 « paquets » :
▶ 33 « classiques » (C++98)
▶ 20 nouveaux ()
▶ les 26 bibliothèques C (C99)

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 3 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Contenu de la bibliothèque standard

La bibliothèque standard C++ contient 33 « paquets » de C++-98 :

<algorithm> plusieurs algorithmes utiles
<bitset> gestions d’ensembles de bits
<complex> les nombres complexes
<deque> tableaux dynamiques avec push_front
<exception> diverses fonctions aidant à la gestion des exceptions
<fstream> manipulation de fichiers
<functional> objets fonctions
<iomanip> manipulation de l’état des flots
<ios> définitions de base des flots
<iosfwd> anticipation de certaines déclarations de flots
<iostream> flots standards
<istream> flots d’entrée
<iterator> itérateurs
<limits> diverses bornes concernant les types numériques
<list> listes doublement chaînées
<locale> contrôles liés au choix de la langue

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 4 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Contenu de la bibliothèque standard (2)

<map> tables associatives clé–valeur ordonnées
<memory> gestion mémoire pour les containers
<new> gestion mémoire
<numeric> fonctions numériques
<ostream> flots de sortie
<queue> files d’attente
<set> ensembles ordonnés
<sstream> flots dans des chaînes de caractères
<stack> piles
<stdexcept> gestion des exceptions
<streambuf> flots avec tampon (buffer)
<string> chaînes de caractères
<strstream> flots dans des chaînes de caractère [en mémoire]
<typeinfo> information sur les types
<utility> divers utilitaires
<valarray> tableaux orientés vers les valeurs
<vector> tableaux dynamiques

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 5 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Contenu de la bibliothèque standard (3)

La bibliothèque standard C++ contient 20 nouveaux « paquets »
de :

<array> tableaux de taille fixe
<atomic> expression atomique
<chrono> heures et chronomètres
<codecvt> conversions d’encodage de caractères
<condition_variable> concurence (multi-thread)
<forward_list> listes simplement chaînées
<future> concurence (multi-thread)
<initializer_list> listes d’initialisation
<mutex> concurence (multi-thread)
<random> nombres aléatoires
<ratio> constantes rationnelles (Q)
<regex> expressions régulières
<scoped_allocator> allocation mémoire
<system_error> erreurs système
<thread> concurence (multi-thread)
<tuple> n-uples
<type_traits> caractéristiques de types

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 6 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Contenu de la bibliothèque standard (4)

<typeindex> utiliser les types comme index de containers
<unordered_map> tables associatives non ordonnées
<unordered_set> ensembles non ordonnés

Il existe aussi dans les outils standards les 26 « paquets» venant
du langage C (C99) :

<cassert> test d’invariants lors de l’exécution
<ccomplex> (inutile en C++) = <complex>
<cctype> diverses informations sur les caractères
<cerrno> code d’erreurs retournés dans la bibliothèque standard
<cfenv> manipulation des règles de gestion des nombres en virgule

flotante
<cfloat> diverses informations sur la représentation des réels
<cinttypes> int de taille fixée (C99)
<ciso646> (inutile en C++)
<climits> diverses informations sur la représentation entiers
<clocale> adaptation à diverses langues
<cmath> diverses définitions mathématiques
<csetjmp> branchement non locaux

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 7 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Contenu de la bibliothèque standard (5)

<csignal> contrôle des signaux (processus)
<cstdalign> (inutile en C++)
<cstdarg> nombre variables d’arguments
<cstdbool> (inutile en C++)
<cstddef> diverses définitions utiles (types et macros)
<cstdio> entrées sorties de base
<cstdint> sous-partie de cinttypes
<cstdlib> diverses opérations de base utiles
<cstring> manipulation des chaînes de caractères à la C
<ctgmath> <cmath> + <complex>
<ctime> diverses conversions de date et heures
<cuchar> char de 16 ou 32 bits
<cwchar> utilisation des caractères étendus
<cwctype> classification des codes de caractères étendus

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 8 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Outils standards

On distingue plusieurs types d’outils. Parmi les principaux :
▶ les containers de base
▶ les containers avancés (appelés aussi « adaptateurs »)
▶ les itérateurs
▶ les algorithmes
▶ les outils numériques
▶ les traitements d’erreurs
▶ les chaînes de caractères
▶ les flots

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 9 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Outils standards (2)

Les outils les plus utilisés par les débutants sont :
▶ les chaînes de caractères (string) ✔

▶ les flots (stream) ✔

▶ les tableaux dynamiques (vector) [container] ✔

▶ les listes chaînées (list) [container avancé]

▶ les piles (stack) [container avancé]

▶ les algorithmes de tris (sort)
▶ les algorithmes de recherche (find)
▶ les itérateurs (iterators)

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 10 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Plan

Présentons maintenant certains des outils standards de façon
plus détaillée.
▶ list [container]

▶ set/unordered_set [container]

▶ iterator

▶ map/unordered_map [container]

▶ stack [container avancé]

▶ queue [container avancé]

▶ sort

▶ find

▶ complex

▶ cmath

▶ Nombres aléatoires

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 11 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Containers

Comme le nom l’indique, les containers sont des structures de
données abstraites (SDA) servant à contenir (« collectionner »)
d’autres objets.

Vous en connaissez déjà plusieurs : les tableaux, les piles et les
listes chaînées.

Il en existe plusieurs autres, parmi lesquels, les files d’attentes
(queue), les ensembles (set, unordered_set) et les tables
associatives (map, unordered_map).

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 12 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Containers (2)

Les files d’attente sont des piles où c’est le premier arrivé
(empilé) qui est dépilé le premier... comme dans une file d’attente
à un guichet !

(alors que dans une pile « normale », c’est toujours le dernier
arrivé qui est dépilé en premier)

Les set permettent de gérer des ensembles (finis !) au sens
mathématique du terme : collection d’éléments où chaque
élément n’est présent qu’une seule fois.

Les tables associatives sont une généralisation des tableaux où
les index ne sont pas forcément des entiers.

Imaginez par exemple un tableau que l’on pourrait indexer par des
chaînes de caractères et écrire par exemple
tab["Informatique"]

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 13 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Containers (3)

Tous les containers contiennent les méthodes suivantes :

bool empty() : le containers est-il vide?

unsigned int size() : nombre d’éléments contenus dans le
container

void clear() : vide le container

iterator erase(it) : supprime du container l’élément pointé
par it. it est un itérateur (généralisation de la notion de pointeur,
voir quelques transparents plus loin)

Ils possèdent également tous les méthodes begin() et end()
que nous verrons avec les itérateurs.

Passons maintenant à quelques containers particuliers

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 14 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Liste (doublement) chaînées
Les listes (doublement) chaînées sont, comme les tableaux
dynamiques, des SDA séquentielles, c’est-à-dire stockant des
séquences (ordonnées) d’éléments.

Par contre dans une liste chaînée, l’accès direct à un élément
n’est pas possible, contrairement aux tableaux dynamiques.

Les listes chaînées sont définies dans la bibliothèque list et se
déclarent de façon similaire à des tableaux dynamiques, par
exemple
list<int> maliste;

(quelques) méthodes des listes chaînées :
Type& front() retourne le premier élément de la liste
Type& back() retourne le dernier élément de la liste
void push_front(Type) ajoute un élément en tête de liste
void push_back(Type) ajoute un élément en queue de liste
void pop_front() supprime le premier élément
void pop_back() supprime le dernier élément
void insert(iterator, Type) insertion avant un élément de

la liste désigné par un itérateur
Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 15 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Liste chaînées

Les listes chaînées sont, comme les tableaux dynamiques, des
SDA séquentielles, c’est-à-dire stockant des séquences
(ordonnées) d’éléments.

Par contre dans une liste chaînée, l’accès direct à un élément
n’est pas possible, contrairement aux tableaux dynamiques.

Les listes simplement chaînées sont définies dans la bibliothèque
forward_list et se déclarent de façon similaire à des tableaux
dynamiques, par exemple
forward_list<int> maliste;

(quelques) méthodes des listes chaînées :

Type& front() retourne le premier élément de la liste
void push_front(Type) ajoute un élément en tête de liste
void pop_front() supprime le premier élément
void insert(iterator, Type) insertion avant un élément de

la liste désigné par un itérateur

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 16 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Tableaux dynamiques : petit complément
Pour accéder directement à un élément d’un tableau dynamique
(vector) on utilise l’opérateur [] : tab[i].

Il existe une autre méthode pour cet accès : at(n) qui, à la
différence de [n], lance une l’exception out_of_range (de la
bibliothèque <stdexcept>) si n n’est pas un index correct.

Exemple :

#include <vector>
#include <stdexcept>
...
vector<int> v(5,3); // 3, 3, 3, 3, 3
int n(12);
try {

cout << v.at(n) << endl;
}
catch (out_of_range) {

cerr << "Erreur : " << n << " n’est pas correct pour v"
<< endl
<< "qui ne contient que " << v.size()

<< " elements." << endl;
}

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 17 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Ensembles – Exemple
Les ensembles (au sens mathématique) sont implémentés dans la
bibliothèque <set>. Ils ne peuvent cependant contenir que des
éléments du même type, lesquels sont ordonnés par operator<.

(Pour des éléments de même type mais non ordonnés, i.e. sans
operator<, on utilisera un unordered_set.)

On déclare un ensemble comme les autres containers, en
spécifiant le type de ses éléments, par exemple :
set<char> monensemble;

Les ensembles n’étant pas des SDA séquentielles, l’accès direct à
un élément n’est pas possible.

(quelques) méthodes des ensembles :
insert(Type) insère un élément s’il n’y est pas déjà
erase(Type) supprime l’élément (s’il y est)
find(Type) retourne un itérateur indiquant l’élément

recherché

a

À noter que la bibliothèque <algorithm> fournit des fonctions
pour faire la réunion, l’intersection et la différence d’ensembles.

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 18 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Ensembles – Exemple

#include <set>
...
set<char> voyelles;

voyelles.insert(’a’);
voyelles.insert(’b’);
voyelles.insert(’e’);
voyelles.insert(’i’);
voyelles.erase(’b’);
voyelles.insert(’e’); /* n’insere pas ’e’ car *

* il y est deja */

Comment parcourir cet ensemble?

for (unsigned int i(0); i < voyelles.size(); ++i)
cout << voyelles[i] << endl;

ne fonctionne pas car c’est une SDA non-indexé (et même
non-séquentielle).

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 19 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Ensembles – parcours

Comment parcourir cet ensemble?

En c’est facile :

for (auto const v : voyelles)
cout << v << endl;

Il y a aussi un autre moyen, plus avancé :

☞ utilisation d’itérateurs

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 20 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Itérateurs

Les itérateurs sont une SDA généralisant d’une part des accès
par index (SDA séquentielles) et d’autre part les pointeurs, dans le
cas de containers.

Ils permettent :
▶ de parcourir de façon itérative les containers
▶ d’indiquer (i.e. de pointer sur) un élément d’un container

Il existe en fait 7 sortes d’itérateurs, mais nous ne parlons ici que
de la plus générale, qui permet de tout faire : lecture et écriture du
containers, aller en avant ou en arrière (accès quelconque en fait).

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 21 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Itérateurs (2)
Un itérateur associé à un container C<type> se déclare
simplement comme C<type>::iterator nom;

Exemples :
vector<double>::iterator i;

set<char>::iterator j;

Il peut s’initialiser grâce aux méthodes begin() ou end() du
container, voire d’autres méthodes spécifiques, comme par
exemple find pour les containers non-séquentiels.

Exemples :
vector<double>::iterator i(monvect.begin());

set<char>::iterator j(monset.find(monelement));

L’élément indiqué par l’itérateur i est simplement *i, comme pour
les pointeurs.

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 22 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Retour sur l’exemple des ensembles

Pour parcourir notre ensemble précédent, nous devons donc
faire :

for (set<char>::iterator i(voyelles.begin());
i != voyelles.end(); ++i)

cout << *i << endl;

Exemple d’utilisation de find :

set<char>::iterator i(voyelles.find(’c’));

if (i == voyelles.end())
cout << ’c’ << "n’est pas dans l’ensemble" << endl;

else
cout << *i << "est dans l’ensemble" << endl;

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 23 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Code complet de l’exemple

#include <set>
#include <iterator>
#include <iostream>
using namespace std;

int main() {
set<char> voyelles;
voyelles.insert(’a’);
voyelles.insert(’b’);
voyelles.insert(’e’);
voyelles.insert(’i’);
voyelles.insert(’a’); // ne fait rien car ’a’ y est deja
voyelles.erase(’b’); // supprime ’b’

// parcours l’ensemble
for (set<char>::iterator i(voyelles.begin()); i!=voyelles.end(); ++i)

cout << *i << endl;

// recherche d’un element
set<char>::iterator element(voyelles.find(’c’));
if (element == voyelles.end())

cout << "l’element n’est pas dans l’ensemble" << endl;
else

cout << *element << " est dans l’ensemble" << endl;

return 0;
}

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 24 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Suppression d’un élément d’un container

On a vu que tout container possédait une méthode
iterator erase(it)

permettant de supprimer un élément, mais...

Attention !on ne peut pas continuer à utiliser l’itérateur it sans
autre !
(plus exactement : erase rend invalide tout itérateur et référence situé(e)
au dela du premier point de suppression)

Exemple d’erreur classique :
vector<double> v;
...
for (vector<double>::iterator i(v.begin()); i != v.end(); ++i)

if (cond(*i)) v.erase(i);

(avec bool cond(double);)
n’est pas correct («Segmentation fault»)

pas plus que :
for (vector<double>::iterator i(v.begin()); i != v.end(); ++i)

if (cond(*i)) i = v.erase(i);

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 25 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Suppression d’un élément d’un container (2)

Ce qu’il faut faire c’est :

vector<double>::iterator next;
for (vector<double>::iterator i(v.begin()); i != v.end();

i = next) {
if (cond(*i)) { next = v.erase(i); }
else { next = ++i; }

}

ou mieux en utilisant remove_if (ou remove) de
<algorithm> :

v.erase(remove_if(v.begin(), v.end(), cond), v.end());

mais qui sont de toutes façons «coûteux» (O(v.size()2)) (voir
transparent suivant)

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 26 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Suppression d’un élément d’un container (3)

En effet, un tableau dynamique n’est pas la bonne SDA si l’on
veut détruire un élément au milieu et garder l’ordre
(utiliser plutôt des listes chaînées pour cela)

Note : si l’on ne tient pas à garder l’ordre, on peut toujours faire :

for (unsigned int i(0); i < v.size(); ++i)
if (cond(v[i])) {

v[i] = v[v.size()-1];
v.pop_back();
--i;

}

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 27 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Tables associatives

Les tables associatives sont une généralisation des tableaux où
les index ne sont pas forcément des entiers.

Imaginez par exemple un tableau que l’on pourrait indexer par des
chaînes de caractères et écrire par exemple
tab["Informatique"]

On parle d’« associations clé–valeur »

Les tables associatives sont définies dans la bibliothèque <map>.

Elles nécessitent deux types pour leur déclaration : le type des «
clés » (les index) et le type des éléments indexé.

Par exemple, pour indexer des nombres réels par des chaînes de
caractères on déclarera :

map<string,double> une_variable;

Si l’ordre (operator<) des clés n’importe pas, on utilisera une
unordered_map.

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 28 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Tables associatives – exemple

#include <map>
#include <string>
#include <iostream>
using namespace std;

int main()
{
map<string,double> moyenne;

moyenne["Informatique"] = 5.5;
moyenne["Physique"] = 4.5;
moyenne["Histoire des maths"] = 2.5;
moyenne["Analyse"] = 4.0;
moyenne["Algebre"] = 5.5;

// parcours de tous les elements
for (map<string,double>::iterator i(moyenne.begin());

i != moyenne.end(); ++i)
cout << "En " << i->first << ", j’ai " << i->second

<< " de moyenne." << endl ;

// recherche
cout << "Ma moyenne en Informatique est de ";
cout << moyenne.find("Informatique")->second << endl;

return 0;
}

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 29 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Piles et files
Les piles ont déjà été vues au dernier cours. Pour utiliser celles de
la STL : #include <stack>

Les files d’attente sont des piles où c’est le premier arrivé
(empilé) qui est dépilé le premier. Elles sont définies dans la
bibliothèque <queue>.

Une pile de type type se déclare par stack<type> et une file
d’attente par queue<type>. Par exemple :

stack<double> une_pile;
queue<char> attente;

méthodes :

Type top() accède au premier élément (sans l’enlever)
void push(Type) empile/ajoute
void pop() dépile/supprime
bool empty() teste si la pile/file est vide

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 30 / 46

Objectifs

Description
générale

Containers
généralités

list

vector

set

iterator

Exemple

erase

map

stack et queue

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Piles – exemple

reprise de l’exemple du dernier cours :
#include <stack>
using namespace std;
...
bool check(string s) {
stack<char> p;
for (unsigned int i(0); i < s.size(); ++i) {
if ((s[i] == ’(’) || (s[i] == ’[’))
p.push(s[i]);

else if (s[i] == ’)’) {
if ((!p.empty()) && (p.top() == ’(’))
p.pop();

else
return false;

} else if (s[i] == ’]’) {
if ((!p.empty()) && (p.top() == ’[’))
p.pop();

else
return false;

}
}
return p.empty();

}

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 31 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Algorithmes

La bibliothèque algorithm (i.e. #include <algorithm>)
définit différents types d’algorithmes généraux :
▶ de séquencement

quelques exemples : for_each, find, random_shuffle,
copy

▶ de tris
sort, mais aussi bien d’autres

▶ numériques
inner_product, partial_sum, adjacent_difference

3 exemples ici :
▶ find

▶ copy et les output_iterators
▶ sort

pour les autres : référez-vous à la documentation

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 32 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

find

find est un algorithme général permettant de faire des
recherches dans (une partie d’)un container.
Son prototype général est :

iterator find(iterator debut, iterator fin, Type valeur);

qui cherche valeur entre debut (inclu) et fin (exclu). Il retourne
un itérateur sur le contenu correspondant à la valeur recherchée
ou fin si cette valeur n’est pas trouvée.

Exemple :

list<int> uneliste;

uneliste.push_back(3);
uneliste.push_back(1);
uneliste.push_back(7);

list<int>::iterator result(find(uneliste.begin(),
uneliste.end(), 7));

if (result != uneliste.end()) cout << "dans la liste";
else cout << "pas dans la liste";
cout << endl;

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 33 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

copy

copy est un algorithme général pour copier (une partir d’)un
container dans un autre.

Son prototype général est :

OutputIterator copy(InputIterator debut, InputIterator fin,
OutputIterator resultat);

qui copie le contenu compris entre debut (inclus) et fin (exclus)
vers resultat (inclus) et les positions suivantes (itérateurs).

La valeur de retour est resultat + (fin - debut).

Attention !Notez bien que cela copie des éléments, mais ne fait
pas d’insertion : il faut absolument que resultat ait (i.e. pointe
sur) la place nécessaire !

Exemple :
copy(unensemble.begin(), unensemble.end(), untableau.begin());

Notez que l’on peut ainsi copier des données d’une SDA dans une autre
SDA d’un autre type.

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 34 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

copy (2)

copy peut être très utile pour afficher le contenu d’un container
sur un flot en utilisant un ostream_iterator (je ne donne qu’un
exemple ici :)
copy(container.begin(), container.end(),

ostream_iterator<int>(cout, ", "));

container contenant ici des int, son contenu sera affiché sur

cout, séparé par des ’, ’.

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 35 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

copy – Exemple complet
#include <iostream>
#include <set>
#include <vector>
#include <iterator>
using namespace std;
int main() {
set<double> unensemble, unautre;

unensemble.insert(1.1);
unensemble.insert(2.2);
unensemble.insert(3.3);

// copy(unensemble.begin(), unensemble.end(), unautre.begin());
// ne fonctionne pas ("assignment of read-only location")
// car unautre n’a pas la taille suffisante.

vector<double> untableau(unensemble.size()); // prevoit la place

copy(unensemble.begin(), unensemble.end(), untableau.begin());

// output
cout << "untableau = ";
copy(untableau.begin(), untableau.end(),

ostream_iterator<double>(cout, ", "));
cout << endl;

return 0;
}

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 36 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

sort

sort permet de trier des SDA implémentées sous forme de
containers

La version la plus simple de tri est (il y en a d’autres) :
void sort(iterator debut, iterator fin)

qui utilise operator< des éléments contenus dans la partie du
container indiquée par debut et fin
(les objets qui y sont stockés doivent donc posséder cet
opérateur)

Exemple :
list<double> uneliste;
...
sort(uneliste.begin(), uneliste.end());

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 37 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Nombres Complexes

La bibliothèque <complex> définit les nombres complexes.

Ils se déclarent par complex<double>. Ils possèdent un
constructeur à 2 arguments permettant de préciser les parties
réelle et imaginaire, e.g.

complex<double> c(3.2,1.4), i(0,1);

Par contre, il n’existe pas de constructeur permettant de créer un
nombre complexe à partir de ses coordonnées polaires.

En revanche, la fonction polar, qui prend comme paramètres la
norme et l’argument du complexe à construire, permet de le faire.
Cette fonction renvoie le nombre complexe nouvellement
construit :

c = polar(sqrt(3.0), M_PI / 12.0);

Les méthodes des nombres complexes sont real() qui retourne
la partie réelle, imag() qui retourne la partie imaginaire, et bien
sûr les operateurs usuels.

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 38 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Nombres Complexes (2)

Ce qui est plus inattendu c’est que les opérations de norme,
argument, et conjugaison n’ont pas été implémentées sous forme
de méthodes, mais de fonctions :

double abs(const complex<double>&) retourne la norme (au
sens français du terme) du
nombre complexe

double norm(const complex<double>&) retourne le carré de la norme
double arg(const complex<double>&) retourne l’argument du

nombre complexe
complex<double> conj(const complex<double>&)

retourne le complexe conjugué

La bibliothèque fournit de plus les extensions des fonctions de
base (trigonométriques, logarithmes, exponentielle) aux nombres
complexes.

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 39 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Détails de <cmath>

Quelques fonctions définies dans la bibliothèque <cmath> :
abs valeur absolue
acos arccos
asin arcsin
atan arctan
ceil ⌈x⌉, entier supérieur
cos cos
cosh cosinus hyperbolique
exp exp
floor ⌊x⌋, entier inférieur
log ln, logarithme népérien
log10 log, logarithme en base 10
pow(x,y) xy = exp(y lnx) — (préférez la multiplication pour les faibles

puissances entières)
sin sin
sinh sinus hyperbolique
sqrt √

tan tan
tanh tangente hyperbolique

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 40 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Détails de <cmath> (2)

Quelques constantes souvent fournies (mais non ISO) :
e M_E

log2(e) M_LOG2E

log10(e) M_LOG10E

ln(2) M_LN2

ln(10) M_LN10

π M_PI
π

2 M_PI_2
π

4 M_PI_4
1
π

M_1_PI
2
π

M_2_PI
2√
π

M_2_SQRTPI
√

2 M_SQRT2
1√
2

M_SQRT1_2

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 41 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Nombres aléatoires

La génération de nombres au hasard sur ordinateur se fait avec
des générateurs dit « pseudo-aléatoires » qui pour une valeur
initiale donnée (appelée « graine » [« seed » en anglais]) donnent
toujours la même séquence « aléatoire » (suivant une distribution
de probabilité choisie).

Utiliser la même graine peut être utile pour déverminer un
programme utilisant des nombres aléatoires.

Pour avoir une série de nombres aléatoires différente à chaque
utilisation du programme, il faut utiliser une graine différente à
chaque fois.

[Même si ce n’est pas terrible,] Cela se fait souvent en utilisant
comme graine la valeur de l’horloge de l’ordinateur à cet instant.

Une autre solution consiste à tirer la graine (voire la séquence
elle-même) depuis un périphérique matériel suffisement
aléatoire (« random device ») : (micro-)déplacement de la souris,
température du processeur, ...

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 42 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Nombres aléatoires (2)

Avant C++11, le seul outil standard pour la génération de nombres
aléatoires était rand, un générateur uniforme de nombres
entiers. Des outils non standards venaient compléter la matériel à
disposition.

int rand() tire un nombre entier entre 0 et RAND_MAX
(2147483647 dans l’état actuel)

La graine de rand() se change avec
void srand(unsigned int graine)

Exemple d’initialisation avec l’horloge :

#include <ctime>
#include <cstdlib>
using namespace std;
...
srand(time(0));

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 43 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Nombres aléatoires (3)

Dans la bibliothèque <random> (), il existe différents
générateurs de nombres pseudo-aléatoires et différentes
distributions de probabilités.

Les deux doivent être combinés pour pouvoir effectuer une série
de tirage.

Ci-après un exemple simple pour tirer de façon uniforme un
nombre aléatoire entier entre min et max.

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 44 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Nombres aléatoires : exemple
#include <iostream>
#include <functional> // pour bind()
#include <random>
using namespace std;

int main()
{
// par exemple (un d’e ?)
int min(1); int max(6);

// distribution uniforme entre min et max
uniform_int_distribution<int> distribution(min, max);

random_device rd; // pour la graine
unsigned int graine(rd());

// choix du generateur et initialisation (graine)
default_random_engine generateur(graine);

auto tirage(bind(distribution, generateur)); // esoterisme

for (int i(0); i < 10; ++i) { // 10 tirages
cout << tirage() << endl;

}
return 0;

} Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 45 / 46

Objectifs

Description
générale

Containers

Algorithmes et
maths

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Ce que j’ai appris aujourd’hui

Qu’il existe beaucoup d’outils prédéfinis dans la bibliothèque
standard de C++

Le but n’est évidemment pas les connaître tous par cœur, mais de
savoir qu’ils existent pour penser aller chercher dans la
documentation les informations complémentaires.

La suite

▶ Révisions

Programmation Orientée Objet – Cours 25 : Bibliothèques d’outils – 46 / 46

	Objectifs
	Description générale
	Containers
	généralités
	list
	vector
	set
	iterator
	Exemple
	erase
	map
	stack et queue

	Algorithmes et maths
	Conclusion

