Objectifs du cours d’aujourd’hui

Programmatlon Orientee Objet (C++) ; Lobjectif du cours d’aujourd’hui est de vous présenter

Librairies standards (sommairement) un certains nombre d’outils standards existant
en C++

Le but ici n’est pas d’étre exhaustif, mais simplement de vous :
» informer de I'existence des principaux outils

Laboratoire d'Intelligence Artificielle » faire prendre conscience d’aller lire/chercher dans la
Faculte 18C documentation les éléments qui peuvent vous étre utiles

Jamila Sam

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

cps cps
L] P' L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 1/46 = P'- L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 2/ 46

Bibliotheque standard Contenu de la bibliothéque standard

Description Description
générale générale
La bibliotheque standard C++ contient 33 « paquets » de C++-98 :
La bibliotheque standard (d’outils) C++ facilite la programmation) , , ,
et permet de la rendre plus efficace, si tant est que I'on <algorithm> plusieurs algorithmes utiles
. ien les outils au'elle fournit. <bitset> gestions d’ensembles de bits
connaisse bien g <complex> les nombres complexes
o . <deque> tableaux dynamiques avec push_front
Cette bibliotheque est cependant vaste et Complc?xe, mais elle <exception> diverses fonctions aidant a la gestion des exceptions
peut dans la plupart des cas s'utiliser de fagcon tres simple, <fstream> manipulation de fichiers
facilitant ainsi la réutilisation des structures de données abstraites <functional> objets fonctions
et des algorithmes sophistiqués qu’elle contient. <iomanip> manipulation de I'état des flots
<ios> définitions de base des flots
La bibliothéque standard ¢s+1} est formée de 79 « paquets » : 22222;» ﬁgt“sc'sﬁztr:g’;rz‘: certaines déclarations de flots
> 33 « classiques » (C++98) <istream> flots d’entrée
» 20 nouveaux (c“ﬂ) <iterator> :;.érateursb N) o
R <limits> iverses bornes concernant les types numériques
> les 26 bibliotheéques C (C99) <list> listes doublement chainées
<locale> contréles liés au choix de la langue

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

[- P [- L [- P [- L
(=1 Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 3/46 (=1 ad Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 4 /46

Contenu de la bibliotheque standard (2) Contenu de la bibliotheque standard (3)

Description Description
générale générale
La bibliotheque standard C++ contient 20 nouveaux « paquets »
<map> table_s ass90|alt|ves clé—valeur ordonnées de c**ﬁ .
<memory> gestion mémoire pour les containers
<new> gestion mémoire <array> tableaux de taille fixe
<numeric> fonctions numériques <atomic> expression atomique
<ostream> flots de sortie <chrono> heures et chronométres
<queue> files d’attente <codecvt> conversions d’encodage de caractéres
<set> ensembles ordonnés <condition_variable> concurence (multi-thread)
<sstream> flots dans des chaines de caracteres <forward_list> listes simplement chainées
<stack> piles <future> concurence (multi-thread)
<stdexcept> gestion des exceptions <initializer list> listes d'initialisation
<streambuf> flots avec tampon (buffer) <mutex> concurence (multi-thread)
<string> chaines de caracteres <random> nombres aléatoires
<strstream> flots dans des chaines de caractére [en mémoire] <ratio> constantes rationnelles (Q)
<typeinfo> information sur les types <regex> expressions réguliéres
<utility> divers utilitaires <scoped_allocator> allocation mémoire
<valarray> tableaux orientés vers les valeurs <system_error> erreurs systéme
<vector> tableaux dynamiques <thread> concurence (multi-thread)
<tuple> n-uples
©EPFL 2024-25 ©EPFL 2024-25 X T
smasan smasan ' <type_traits> caractéristiques de types
EPFL Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 5/46 EPFL Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 6/46
.~ Contenu de la bibliotheque standard (4) . Contenu de la bibliotheque standard (5)
générale générale
<typeindex> utiliser les types comme index de containers
<unordered_map> tables associatives non ordonnées
<unordered_set> ensembles non ordonnés <csignal> contr6le des signaux (processus)
<cstdalign> (inutile en C++)
Il existe aussi dans les outils standards les 26 « paquets» venant cestdarge nombre variables d'arguments
du langage C (C99) : cestdbools (inutile en C++) .
<cstddef> diverses définitions utiles (types et macros)
<cassert> test d’invariants lors de I'exécution <cstdio> entrées sorties de base
<ccomplex> (inutile en C++) = <complex> <cstdint> sous-partie de cinttypes
<cctype> diverses informations sur les caractéres <cstdlib> diverses opérations de base utiles
<cerrno> code d’erreurs retournés dans la bibliothéque standard <cstring> manipulation des chaines de caracteres a la C
<cfenv> manipulation des régles de gestion des nombres en virgule <ctgmath> <cmath> + <complex>
flotante <ctime> diverses conversions de date et heures
<cfloat> diverses informations sur la représentation des réels <cuchar> char de 16 ou 32 bits
<cinttypes> int de taille fixée (C99) <cwchar> utilisation des caracteres étendus
<ciso646> (inutile en C++) <cwctype> classification des codes de caractéres étendus
<climits> diverses informations sur la représentation entiers
<clocale> adaptation a diverses langues
OEPFL 202425 <cmath> diverses définitions mathématiques OEPFL 2024.25
o e crappeter <CSet Jmp> branchement non locaux A Gomic Chappelier
EPFL Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 7/ 46 EPFL

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 8/ 46

Description
générale

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

généralités

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Outils standards

On distingue plusieurs types d’outils. Parmi les principaux :

>

VVVvVVvVVYVYY

les containers de base

les containers avancés (appelés aussi « adaptateurs »)

les itérateurs

les algorithmes

les outils numériques

les traitements d’erreurs
les chaines de caracteres
les flots

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 9/ 46

Plan

Présentons maintenant certains des outils standards de fagon

plus détaillée.

>

VVvVvvyVvVVvyVVYVYYVY

1ist [container]
set/unordered_set [container]
iterator
map/unordered_map [container]
stack [container avancé]

queue [container avancé]

sort

find

complex

cmath

Nombres aléatoires

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 11 /46

Description
générale

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

généralités

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Outils standards (2)

Les outils les plus utilisés par les débutants sont :

> les chaines de caractéres (string) v
les flots (st ream)
les tableaux dynamiques (vector) [container] v
les listes chainées (11ist) [container avancé]

AN

les piles (stack) [container avancé]

les algorithmes de tris (sort)

les algorithmes de recherche (find)
les itérateurs (iterators)

vVvvyVvYVvyyypy

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 10/ 46

Containers

Comme le nom lindique, les containers sont des structures de
données abstraites (SDA) servant a contenir (« collectionner »)
d’autres objets.

Vous en connaissez déja plusieurs : les tableaux, les piles et les
listes chainées.

Il en existe plusieurs autres, parmi lesquels, les files d’attentes

(queue), les ensembles (set, unordered_set) et les tables
associatives (map, unordered_map).

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 12/ 46

généralités

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

list

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Containers (2)

Les files d’attente sont des piles ou c’est le premier arrivé
(empilé) qui est dépilé le premier... comme dans une file d’attente
a un guichet!

(alors que dans une pile « normale », c’est toujours le dernier
arrivé qui est dépilé en premier)

Les set permettent de gérer des ensembles (finis!) au sens
mathématique du terme : collection d’éléments ou chaque
élément n’est présent qu'une seule fois.

Les tables associatives sont une généralisation des tableaux ou
les index ne sont pas forcément des entiers.

Imaginez par exemple un tableau que I'on pourrait indexer par des
chaines de caractéres et écrire par exemple
tab["Informatique"]

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 13/ 46

Liste (doublement) chainées

Les listes (doublement) chainées sont, comme les tableaux
dynamiques, des SDA séquentielles, c’est-a-dire stockant des
séquences (ordonnées) d’éléments.

Par contre dans une liste chainée, I'accés direct a un élément
n’est pas possible, contrairement aux tableaux dynamiques.

Les listes chainées sont définies dans la bibliotheque 1ist et se
déclarent de fagon similaire a des tableaux dynamiques, par
exemple

list<int> maliste;

(quelques) méthodes des listes chainées :
Types& front () retourne le premier élément de la liste
Types& back () retourne le dernier élément de la liste
void push_front (Type) ajoute un élément en téte de liste
void push_back (Type) ajoute un élément en queue de liste
void pop_front () supprime le premier élément
void pop_back () supprime le dernier élément
Type) insertion avant un élément de
la liste désigné par un itérateur

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 15/ 46

void insert (iterator,

généralités

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Containers (3)

Tous les containers contiennent les méthodes suivantes :

bool empty () :le containers est-il vide ?

unsigned int size () :nombre d’éléments contenus dans le
container

void clear () :vide le container

iterator erase (it) :supprime du container I'élément pointé
par it. it estun itérateur (généralisation de la notion de pointeur,
voir quelques transparents plus loin)

lIs possedent également tous les méthodes begin () et end ()
que nous verrons avec les itérateurs.

Passons maintenant a quelques containers particuliers

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 14 /46

c+1} Liste chainées

Les listes chainées sont, comme les tableaux dynamiques, des
SDA séquentielles, c’est-a-dire stockant des séquences
(ordonnées) d’éléments.

Par contre dans une liste chainée, I'accés direct a un élément
n’est pas possible, contrairement aux tableaux dynamiques.

Les listes simplement chainées sont définies dans la bibliothéque
forward_list et se déclarent de fagon similaire a des tableaux
dynamiques, par exemple

forward_list<int> maliste;

(quelques) méthodes des listes chainées :

Types& front () retourne le premier élément de la liste
void push_front (Type) ajoute un élément en téte de liste
supprime le premier élément

Type) insertion avant un élément de
la liste désigné par un itérateur

void pop_front ()
void insert (iterator,

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 16/ 46

jénéralités

vector

Exemple

Tableaux dynamiques : petit complément

Pour accéder directement a un élément d’'un tableau dynamique
(vector) on utilise 'opérateur [] :tab[i].

Il existe une autre méthode pour cet acces : at (n) qui, ala
différence de [n], lance une I'exception out_of_range (de la

bibliothéque <stdexcept>) si n n’est pas un index correct.

Exemple :
#include <vector>
#include <stdexcept>
vector<int> v(5,3); // 3, 3, 3, 3, 3
int n(12);
try |
cout << v.at(n) << endl;
}
catch (out_of_range) {
cerr << "Erreur : " << n << " n’est pas correct pour v"
<< endl
<< "qui ne contient que " << v.size()
<< " elements." << endl;
Sz }
& Jean-Cédric Chappelier
cPFL Pro tion Orientée Objet — Cours 25 : Bibliothe doutils - 17 /46
grammation Orientee el ours H otheques doutlls

Ensembles — Exemple

#include <set>

set<char> voyelles;

4

a’
'’
e
i
’

voyelles.insert (
voyelles.insert (
voyelles.insert (/
voyelles.insert (’
voyelles.erase ('b
voyelles.insert (‘e

14

)

)
)
")
)

4

’

’

4

’
); /* n’insere pas ‘e’ car %

* 11 y est deja #*/

Comment parcourir cet ensemble ?

for (unsigned int i (0);
cout << voyelles[i]

i < voyelles.size(); ++1i)

<< endl;

ne fonctionne pas car c’est une SDA non-indexé (et méme

non-séquentielle).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 19/ 46

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Ensembles — Exemple
Les ensembles (au sens mathématique) sont implémentés dans la
bibliothéque <set>. lls ne peuvent cependant contenir que des
éléments du méme type, lesquels sont ordonnés par operator<.

(Pour des éléments de méme type mais non ordonnés, i.e. sans

operator<, on utilisera un unordered_set.)

On déclare un ensemble comme les autres containers, en

spécifiant le type de ses éléments, par exemple :
set<char> monensemble;

Les ensembles n’étant pas des SDA séquentielles, I'accés direct a

un élément n’est pas possible.

(quelques) méthodes des ensembles :

insert (Type) insére un élément s’il N’y est pas déja

erase (Type)
find (Type)

supprime I'élément (s’il y est) a
retourne un itérateur indiquant I'élément
recherché

A noter que la bibliothéque <algorithm> fournit des fonctions
pour faire la réunion, l'intersection et la différence d’ensembles.

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 18/ 46

Ensembles — parcours

Comment parcourir cet ensemble ?

En cﬂ'&\l C'est facile :

for (auto const v

voyelles)

cout << v << endl;

Il'y a aussi un autre moyen, plus avancé :

= Utilisation d’itérateurs

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 20/ 46

ltérateurs

généralités

Les itérateurs sont une SDA généralisant d’une part des accées
. par index (SDA séquentielles) et d’autre part les pointeurs, dans le
cas de containers.

lIs permettent :
» de parcourir de fagon itérative les containers
» d’indiquer (i.e. de pointer sur) un élément d’un container

Il existe en fait 7 sortes d’itérateurs, mais nous ne parlons ici que
de la plus générale, qui permet de tout faire : lecture et écriture du
containers, aller en avant ou en arriére (accés quelconque en fait).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cps
= P' L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 21/ 46

Retour sur I’exemple des ensembles

généralités

Pour parcourir notre ensemble précédent, nous devons donc
faire :
Exemple for (set<char>::iterator i(voyelles.begin());

i != voyelles.end(); ++1i)
cout << x1 << endl;

Exemple d'utilisation de £ind :

set<char>::iterator 1i(voyelles.find(’'c’));

if (i == voyelles.end())

cout << ¢’ << "n’est pas dans 1l’ensemble" << endlf

else
cout << *x1 << "est dans l’ensemble" << endl;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 23/ 46

généralités

iterator

Exemple

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

généralités

Exemple

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Itérateurs (2)

Un itérateur associé a un container c<type> se déclare
simplement comme C<type>::iterator nom;

Exemples :
vector<double>::iterator 1i;

set<char>::iterator j;

Il peut s’initialiser grace aux méthodes begin () ou end () du
container, voire d’autres méthodes spécifiques, comme par
exemple £ind pour les containers non-séquentiels.

Exemples :
vector<double>::iterator i (monvect.begin());

set<char>::iterator j(monset.find(monelement));

Lélément indiqué par l'itérateur i est simplement i, comme pour
les pointeurs.

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 22/ 46

Code complet de I'’exemple

#include <set>

#include <iterator>
#include <iostream>
using namespace std;

int main() {
set<char> voyell
voyelles.insert (
voyelles.insert
voyelles.insert
voyelles.insert
voyelles.insert
voyelles.erase ('

(
(
(
(; // ne fait rien car ’a’ y est deja
// supprime ’b’

// parcours 1l’ensemble
for (set<char>::iterator 1i(voyelles.begin()); i!=voyelles.end(); ++1i)
cout << xi << endl;

// recherche d’un element
set<char>::iterator element (voyelles.find(’c’));

if (element == voyelles.end()

cout << "l’element n’est pas dans 1l’ensemble" << endl;
else

cout << xelement << " est dans 1l’ensemble" << endl;

return 0;

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 24 / 46

Suppression d’un élément d’un container

On a vu que tout container possédait une méthode

généralités

iterator erase (it)

permettant de supprimer un élément, mais...

Eremp-
Attention !on ne peut pas continuer a utiliser l'itérateur it sans
% autre!
(plus exactement : erase rend invalide tout itérateur et référence situé(e)
au dela du premier point de suppression)

Exemple d’erreur classique :
vector<double> v;

for (vector<double>::iterator i(v.begin()); i != v.end(); ++1)
if (cond(x1i)) v.erase(i);

(avec bool cond (double) ;)
n’est pas correct («<Segmentation fault»)

pas plus que :

for (vector<double>::iterator i(v.begin()); i != v.end(); ++1)
©EPFL 2024-25
Jamila Sam if (cond(x1i)) 1 = v.erase(i);

& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 25/ 46

Suppression d’un élément d’un container (3)

généralités

En effet, un tableau dynamique n’est pas la bonne SDA si I'on
fenee veut détruire un élément au milieu et garder 'ordre
(utiliser plutét des listes chaineées pour cela)

Note : si I'on ne tient pas a garder I'ordre, on peut toujours faire :

for (unsigned int 1i(0); i < v.size(); ++1i)
if (cond(v[i])) {
v[ii] = v v.size()-1];
v.pop_back () ;
——1i;

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 27/ 46

généralités

Exemple

erase

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

généralités

Exemple

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Suppression d’un élément d’un container (2)

Ce qu'il faut faire c’est :

vector<double>::iterator next;

for (vector<double>::iterator i(v.begin()); i !'= v.end();
i = next) {
if (cond(*1i)) { next = v.erase(i); }
else { next = ++1i; }

ou mieux en utilisant remove_if (ou remove) de
<algorithm> :

v.erase (remove_if (v.begin(), v.end(), cond), v.end()); I

mais qui sont de toutes fagons «colteux» (O (v.size ()2)) (voir
transparent suivant)

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 26 / 46

Tables associatives

Les tables associatives sont une généralisation des tableaux ou
les index ne sont pas forcément des entiers.

Imaginez par exemple un tableau que I'on pourrait indexer par des
chaines de caracteres et écrire par exemple
tab["Informatique"]

On parle d’« associations clé—valeur »
Les tables associatives sont définies dans la bibliothéque <map>.
Elles nécessitent deux types pour leur déclaration : le type des «

clés » (les index) et le type des éléments indexé.

Par exemple, pour indexer des nombres réels par des chaines de
caracteres on déclarera :
map<string,double> une_variable;

Sil'ordre (operator<) des clés n'importe pas, on utilisera une
unordered_map.

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 28/ 46

Tables associatives — exemple

#include <map>

généralités #include <string>
#include <iostream>
using namespace std;

Exemple int main()
{
map map<string, double> moyenne;
moyenne ["Informatique"] = 5.5;
moyenne ["Physique"] = 4.5;
moyenne ["Histoire des maths"] = 2.5;
moyenne ["Analyse"] = 4.0;
moyenne ["Algebre"] = 5.5;

// parcours de tous les elements
for (map<string,double>::iterator i (moyenne.begin());

i != moyenne.end(); ++1i)
cout << "En " << i->first << ", j’ai " << i->second
<< " de moyenne." << endl ;

// recherche
cout << "Ma moyenne en Informatique est de ";
cout << moyenne.find("Informatique")->second << endl;

return 0;
©EPFL 2024-25
Jamila Sam }
& Jean-Cédric Chappelier

EFDE[_
LI Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 29/ 46

Piles — exemple

reprise de I'exemple du dernier cours :
#include <stack>
using namespace std;

généralités

Exemple bool check (string s) {
stack<char> p;
for (unsigned int i(0); i < s.size();
if ((s[i] == " (") Il (s[i] == "1"))
p.push(s[i]);
else if (s[i] == ")") {
if ((!p.empty()) && (p.top() == "("))
p.pop () ;
else
return false;
} else if (s[i] == "1") {
if ((!p.empty()) && (p.top() == "1[7))
p.pop();
else
return false;

++1i) |

stack et queue

}
}

©EPFL 2024-25 return p.empty();
Jamila Sam }
& Jean-Cédric Chappelier

[- P [- L
= Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 31/ 46

Piles et files

Les piles ont déja été vues au dernier cours. Pour utiliser celles de
sencreies laSTL : #include <stack>

Les files d’attente sont des piles ou c’est le premier arrivé

. (empilé) qui est dépilé le premier. Elles sont définies dans la
et bibliothéque <queue>.
Une pile de type type se déclare par stack<type> et une file
d’'attente par queue<type>. Par exemple :
stack<double> une_pile;
queue<char> attente;
méthodes :
Type top() accede au premier élément (sans I'enlever)
void push (Type) empile/ajoute
void pop () dépile/supprime
S s bool empty () teste si la pile/file est vide
& Jean-Cédric Chappelier
EPFL Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 30/ 46
Algorithmes

Algorithmes et La bibliotheque algorithm (i.e. #include <algorithm>)
mae définit différents types d’algorithmes généraux :

» de séquencement
quelques exemples : for_each, find, random_shuffle,
copy
> de tris
sort, mais aussi bien d’autres
» numériques
inner_product, partial_sum, adjacent_difference

3 exemples ici :
» find
» copy etles output_iterators
> sort
pour les autres : référez-vous a la documentation

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

[- P [- L
=rr Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 32/ 46

find copy

copy est un algorithme général pour copier (une partir d’jun
container dans un autre.

find est un algorithme général permettant de faire des
Algorthmes o recherches dans (une partie d’)un container. Algorthmes o
Son prototype général est :
iterator find(iterator debut, iterator fin, Type valeur);
qui cherche valeur entre debut (inclu) et £in (exclu). Il retourne
un itérateur sur le contenu correspondant a la valeur recherchée

ou fin si cette valeur n’est pas trouvée.

Son prototype général est :

OutputIterator copy (InputIterator debut, InputlIterator fin,
OutputIterator resultat);

qui copie le contenu compris entre debut (inclus) et £in (exclus)

£ I vers resultat (inclus) et les positions suivantes (itérateurs).
xemple :
La valeur de retour est resultat + (fin - debut).

list<int> uneliste;

uneliste.push_back (3);
uneliste.push_back (1) ;
uneliste.push_back (7);

pas d’insertion : il faut absolument que resultat ait (i.e. pointe

. Attention !INotez bien que cela copie des éléments, mais ne fait
sur) la place nécessaire !

list<int>::iterator result (find(uneliste.begin(),
uneliste.end (), 7));

Exemple :

if (result != uneliste.end()) cout << "dans la liste"; copy (unensemble.begin (), unensemble.end(), untableau.begin());
else cout << "pas dans la liste"; L . i
i cout << endl; CEPFL 202425 Notez que 'on peut ainsi copier des données d’'une SDA dans une autre
& Jean-Cédric Chappelier & Jean-Cédric Chappelier]
=pEL =pEL SDA d’un autre type.
=iy Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 33/ 46 =iy Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 34 /46

copy (2) copy — Exemple complet

#include <iostream>
#include <set>
#include <vector>
#include <iterator>
using namespace std;
int main() {
set<double> unensemble, unautre;

Algorithmes et Algorithmes et
maths maths

copy peut étre trés utile pour afficher le contenu d’'un container
sur un flot en utilisant un ostream_iterator (je ne donne qu’un
exemple ici :)

copy (container.begin(), container.end(),

unensemble.insert (1.1)

7
unensemble.insert (2.2);
unensemble.insert (3.3);

ostream_iterator<int> (cout, ", "));
container contenant ici des int, son contenu sera affiché sur

cout, séparé par des’,

// copy (unensemble.begin(), unensemble.end(), unautre.begin());
// ne fonctionne pas ("assignment of read-only location")
// car unautre n’a pas la taille suffisante.

vector<double> untableau (unensemble.size()); // prevoit la place

copy (unensemble.begin (), unensemble.end(), untableau.begin());

// output

cout << "untableau = ";

copy (untableau.begin(), untableau.end(),
ostream_iterator<double> (cout, ", "));

cout << endl;

©EPFL 2024-25 ©EPFL 2024-25

return 0;

Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier }
cpre -pre
= Pi' L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 35/ 46 = Pi' L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 36 /46

sort

Algorithmes et
maths

sort permet de trier des SDA implémentées sous forme de
containers

La version la plus simple de tri est (il y en a d’autres) :
void sort (iterator debut, iterator fin)
qui utilise operator< des éléments contenus dans la partie du
container indiquée par debut et fin
(les objets qui y sont stockés doivent donc posséder cet

opérateur)
Exemple :
list<double> uneliste;
sort (uneliste.begin(), uneliste.end());
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
EF)E[_
=iy Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 37/ 46

Nombres Complexes (2)

Algorithmes et

maths Ce qui est plus inattendu c’est que les opérations de norme,
argument, et conjugaison n’ont pas été implémentées sous forme
de méthodes, mais de fonctions :

double abs (const complex<double>s) retourne la norme (au
sens francais du terme) du
nombre complexe

double norm(const complex<double>g) retourne le carré de lanorme

double arg(const complex<double>s) retourne I’argument du
nombre complexe

complex<double> conj(const complex<double>&)

retourne le complexe conjugué

La bibliothéque fournit de plus les extensions des fonctions de
base (trigonométriques, logarithmes, exponentielle) aux nombres
complexes.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
=i L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 39/ 46

Nombres Complexes

La bibliotheque <complex> définit les nombres complexes.

Algorithmes et
maths

lls se déclarent par complex<double>. lls possedent un
constructeur a 2 arguments permettant de préciser les parties
réelle et imaginaire, e.g.

complex<double> c(3.2,1.4), 1(0,1);

Par contre, il n’existe pas de constructeur permettant de créer un
nombre complexe a partir de ses coordonnées polaires.

En revanche, la fonction polar, qui prend comme paramétres la
norme et 'argument du complexe a construire, permet de le faire.
Cette fonction renvoie le nombre complexe nouvellement
construit :

c = polar(sqrt(3.0), M_PI / 12.0);

Les méthodes des nombres complexes sont real () quiretourne
la partie réelle, imag () qui retourne la partie imaginaire, et bien
©EPFL 202625 s(r les operateurs usuels.

Jamila Sam
& Jean-Cédric Chappelier

L= P L= L
=i Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 38/ 46

Détails de <cmath>

Quelques fonctions définies dans la bibliothéque <cmath> :

Algorithmes et abs valeur absolue

e acos arccos
asin arcsin
atan arctan
ceil [x], entier supérieur
CcOsSs COos
cosh cosinus hyperbolique
exp exp
floor | x|, entier inférieur
log In, logarithme népérien
loglo0 log, logarithme en base 10

pow (x,y) XY =exp(yInx) — (préférez la multiplication pour les faibles
puissances entieres)

sin sin
sinh sinus hyperbolique
sgrt \[

©EPFL 2024-25 tan tan

Jamila Sam

& dean-Céaric Chappeler a1 h tangente hyperbolique

[- P [- L
=rr Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 40/ 46

Détails de <cmath> (2)

Ao Quelques constantes souvent fournies (mais non I1SO) :
gorithmes et
maths e M E

logo(€) M_LOG2E

logig(€) M_LOGLOE
In(2) M_LN2
In(10) M_IN10

T M _PI
3 M PI 2
T M_PI_4
1 M_1_PI
2 M_2_PI
% M_2_SQRTPI
V2 M_SOQRT2
S 75 M.SQRT1_2

Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 41/ 46
Nombres aléatoires (2)

Algorithmes et Avant C++11, le seul outil standard pour la génération de nombres

mae aléatoires était rand, un générateur uniforme de nombres
entiers. Des outils non standards venaient compléter la matériel a
disposition.

int rand () tire un nombre entier entre 0 et RAND_MAX
(2147483647 dans I'état actuel)

La graine de rand () se change avec
void srand(unsigned int graine)

Exemple d'initialisation avec I'’horloge :

#include <ctime>
#include <cstdlib>
using namespace std;

srand (time (0)) ;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 43/ 46

Nombres aléatoires

Motmes La géqér/ation de qombres au ha,sarq sur ordi.nateur se fait avec

maths des générateurs dit « pseudo-aléatoires » qui pour une valeur
initiale donnée (appelée « graine » [« seed » en anglais]) donnent
toujours la méme séquence « aléatoire » (suivant une distribution
de probabilité choisie).

Utiliser la méme graine peut étre utile pour déverminer un
programme utilisant des nombres aléatoires.

Pour avoir une série de nombres aléatoires différente a chaque
utilisation du programme, il faut utiliser une graine différente a
chaque fois.

[Méme si ce n'est pas terrible,] Cela se fait souvent en utilisant
comme graine la valeur de I'horloge de 'ordinateur a cet instant.

Une autre solution consiste a tirer la graine (voire la séquence

elle-méme) depuis un périphérique matériel suffisement

aléatoire (« random device ») : (micro-)déplacement de la souris,
Samiaam température du processeur, ...

& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 42/ 46
c»2 Nombres aléatoires (3)

Algorithmes et
maths

Dans la bibliothéque <random> (¢a+i2), il existe différents
générateurs de nombres pseudo-aléatoires et différentes
distributions de probabilités.

Les deux doivent étre combinés pour pouvoir effectuer une série
de tirage.

Ci-apres un exemple simple pour tirer de fagon uniforme un
nombre aléatoire entier entre min et max.

©EPFL 2024-25

Jamila Sam

& Jean-Cédric Chappelier
-pr-
cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 44/ 46

Algorithmes et
maths

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

c»12 Nombres aléatoires : exemple

#include <iostream>

#include <functional> // pour bind()
#include <random>

using namespace std;

int main ()

{

}

// par exemple (un d’e ?)
int min(1); int max (6);

// distribution uniforme entre min et max
uniform_int_distribution<int> distribution (min, max);
random_device rd; // pour la graine
unsigned int graine(rd());

// choix du generateur et initialisation (graine)

default_random_engine generateur (graine);

auto tirage (bind(distribution, generateur)); // esoterisme

for (int 1i(0);
cout << tirage ()

}

return 0;

i < 10; ++1i)
<< endl;

{ // 10 tirages

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 45/ 46

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Ce que j’ai appris aujourd’hui

Qu'il existe beaucoup d’outils prédéfinis dans la bibliothéque
standard de C++

Le but n’est évidemment pas les connaitre tous par coeur, mais de
savoir qu’ils existent pour penser aller chercher dans la
documentation les informations complémentaires.

La suite

» Révisions

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 46 / 46

	Objectifs
	Description générale
	Containers
	généralités
	list
	vector
	set
	iterator
	Exemple
	erase
	map
	stack et queue

	Algorithmes et maths
	Conclusion

