Objectifs

Description
générale

Containers

Algorithmes et

Programmation Orientée Objet (C++) :
Librairies standards
Jamila Sam
Laboratoire d’Intelligence Artificielle
Faculté 1&C

& Jean-Cédric Chappelier

E PFL Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 1/46

- Objectifs du cours d’aujourd’hui

Lobjectif du cours d’aujourd’hui est de vous présenter
(sommairement) un certains nombre d’outils standards existant
en C++

Le but ici n’est pas d’étre exhaustif, mais simplement de vous :
» informer de I'existence des principaux outils

» faire prendre conscience d’aller lire/chercher dans la
documentation les éléments qui peuvent vous étre utiles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 2/46

Bibliotheque standard

Description
générale

La bibliothéque standard (d’outils) C++ facilite la programmation
et permet de la rendre plus efficace, si tant est que 'on
connaisse bien les outils qu’elle fournit.

Cette bibliothéque est cependant vaste et complexe, mais elle
peut dans la plupart des cas s’utiliser de fagon trés simple,
facilitant ainsi la réutilisation des structures de données abstraites
et des algorithmes sophistiqués qu’elle contient.

La bibliothéque standard (;4*1\3 est formée de 79 « paquets » :
> 33 « classiques » (C++98)
» 20 nouveaux (ca—tﬂ)
> les 26 bibliothéques C (C99)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliotheques d’outils — 3/ 46

Contenu de la bibliotheque standard

Description
générale

La bibliothéque standard C++ contient 33 « paquets » de C++-98 :

<algorithm> plusieurs algorithmes utiles

<bitset> gestions d’ensembles de bits

<complex> les nombres complexes

<deque> tableaux dynamiques avec push_front
<exception> diverses fonctions aidant a la gestion des exceptions
<fstream> manipulation de fichiers

<functional> objets fonctions

<iomanip> manipulation de I'état des flots

<ios> définitions de base des flots

<iosfwd> anticipation de certaines déclarations de flots
<iostream> flots standards

<istream> flots d’entrée

<iterator> itérateurs

<limits> diverses bornes concernant les types numériques
<list> listes doublement chainées

<locale> contrbles liés au choix de la langue

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 4 /46

Description
générale

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

<map>
<memory>
<new>
<numeric>
<ostream>
<queue>
<set>
<sstream>
<stack>
<stdexcept>
<streambuf>
<string>
<strstream>
<typeinfo>
<utility>
<valarray>
<vector>

Contenu de la bibliotheque standard (2)

tables associatives clé—valeur ordonnées
gestion mémoire pour les containers
gestion mémoire

fonctions numériques

flots de sortie

files d’attente

ensembles ordonnés

flots dans des chaines de caractéres
piles

gestion des exceptions

flots avec tampon (buffer)

chaines de caracteres

flots dans des chaines de caractére [en mémoire]

information sur les types

divers utilitaires

tableaux orientés vers les valeurs
tableaux dynamiques

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 5/46

Contenu de la bibliothéque standard (3)

Description
générale
La bibliotheque standard C++ contient 20 nouveaux « paquets »
de casid :

<array> tableaux de taille fixe
<atomic> expression atomique
<chrono> heures et chronométres
<codecvt> conversions d’encodage de caracteres
<condition_variable> concurence (multi-thread)
<forward_list> listes simplement chainées
<future> concurence (multi-thread)
<initializer_list> listes d'initialisation
<mutex> concurence (multi-thread)
<random> nombres aléatoires
<ratio> constantes rationnelles (Q)
<regex> expressions réguliéres
<scoped_allocator> allocation mémoire
<system_error> erreurs systeme
<thread> concurence (multi-thread)
<tuple> n-uples

S <type_traits> caractéristiques de types

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 6 /46

Description
générale

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

<typeindex>

<unordered_map>
<unordered_ set>

Contenu de la bibliothéque standard (4)

utiliser les types comme index de containers
tables associatives non ordonnées
ensembles non ordonnés

Il existe aussi dans les outils standards les 26 « paquets» venant
du langage C (C99) :

<cassert>
<ccomplex>
<cctype>
<cerrno>
<cfenv>

<cfloat>
<cinttypes>
<ciso646>
<climits>
<clocale>
<cmath>
<cset jmp>

test d’invariants lors de I'exécution

(inutile en C++) = <complex>

diverses informations sur les caracteres

code d’erreurs retournés dans la bibliotheque standard
manipulation des régles de gestion des nombres en virg
flotante

diverses informations sur la représentation des réels
int de taille fixée (C99)

(inutile en C++)

diverses informations sur la représentation entiers
adaptation a diverses langues

diverses définitions mathématiques

branchement non locaux

Programmation Orientée Objet — Cours 25 : Bibliotheques d’outils — 7/ 46

Contenu de la bibliothéque standard (5)

Description

générale
<csignal> contrble des signaux (processus)
<cstdalign> (inutile en C++)
<cstdarg> nombre variables d’arguments
<cstdbool> (inutile en C++)
<cstddef> diverses définitions utiles (types et macros)
<cstdio> entrées sorties de base
<cstdint> sous-partie de cinttypes
<cstdlib> diverses opérations de base utiles
<cstring> manipulation des chaines de caractéres a la C
<ctgmath> <cmath> + <complex>
<ctime> diverses conversions de date et heures
<cuchar> char de 16 ou 32 bits
<cwchar> utilisation des caractéres étendus
<cwctype> classification des codes de caractéres étendus

©EPFL 2024-25

& Join Géaric Chappelir

=PFL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 8/46

Outils standards

Description
générale

On distingue plusieurs types d’outils. Parmi les principaux :
> les containers de base

les containers avancés (appelés aussi « adaptateurs »)

les itérateurs

les algorithmes

les outils numériques

les traitements d’erreurs

les chaines de caractéres

les flots

vyVvyYvyvyVvYyYyvyy

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliotheques d’outils — 9/ 46

Outils standards (2)

Description
générale

Les outils les plus utilisés par les débutants sont :

> les chaines de caractéres (st ring) v
les flots (st ream)
les tableaux dynamiques (vector) [container]
les listes chainées (11 st) [container avancé]
les piles (stack) [container avancé]
les algorithmes de tris (sort)
les algorithmes de recherche (find)
les itérateurs (iterators)

AR

vVvyVvyVvyVvyYyvyy

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 10/ 46

Plan

généralités

Présentons maintenant certains des outils standards de fagon
plus détaillée.

» 1ist [container]
set/unordered_set [container]
iterator
map/unordered_map [container]
stack [container avancé]

queue [container avancé]

sort

find

complex

cmath

Nombres aléatoires

vVVvVvyVYyVvVYVYyVvyVvyVYYVYYyY

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 11 /46

Containers

généralités

Exemple Comme le nom l'indique, les containers sont des structures de
données abstraites (SDA) servant a contenir (« collectionner »)
d’autres objets.

Vous en connaissez déja plusieurs : les tableaux, les piles et les
listes chainées.

Il en existe plusieurs autres, parmi lesquels, les files d’attentes
(queue), les ensembles (set, unordered_set) et les tables
associatives (map, unordered_map).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 12/ 46

Containers (2)

généraliés Les files d’attente sont des piles ou c’est le premier arrivé
(empilé) qui est dépilé le premier... comme dans une file d’attente
a un guichet!

(alors que dans une pile « normale », c’est toujours le dernier
arrivé qui est dépilé en premier)

Les set permettent de gérer des ensembles (finis!) au sens
mathématique du terme : collection d’éléments ou chaque
élément n’est présent qu’une seule fois.

Les tables associatives sont une généralisation des tableaux ou
les index ne sont pas forcément des entiers.

Imaginez par exemple un tableau que I'on pourrait indexer par des
chaines de caractéeres et écrire par exemple
tab["Informatique"]

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 13/ 46

Containers (3)

généralités
Tous les containers contiennent les méthodes suivantes :

bool empty () :le containers est-il vide ?

unsigned int size () :nombre d’éléments contenus dans le
container

void clear () :vide le container

iterator erase (it) :supprime du container I'élément pointé
par it. it estun itérateur (généralisation de la notion de pointeur,
voir quelques transparents plus loin)

lls possédent également tous les méthodes begin () et end ()
que nous verrons avec les itérateurs.

Passons maintenant a quelques containers particuliers

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 14 /46

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Liste (doublement) chainées
Les listes (doublement) chainées sont, comme les tableaux
dynamiques, des SDA séquentielles, c’est-a-dire stockant des
séquences (ordonnées) d’éléments.

Par contre dans une liste chainée, I'accés direct a un élément
n’est pas possible, contrairement aux tableaux dynamiques.

Les listes chainées sont définies dans la bibliothéque 1ist et se
déclarent de facon similaire a des tableaux dynamiques, par
exemple

list<int> maliste;

(quelques) méthodes des listes chainées :

Type& front ()
Type& back ()

void
void
void
void
void

push_front (Type)
push_back (Type)
pop_front ()
pop_back ()
insert (iterator,

retourne le premier élément de la liste
retourne le dernier élément de la liste
ajoute un élément en téte de liste
ajoute un élément en queue de liste
supprime le premier élément
supprime le dernier élément

Type) insertion avant un élément de
la liste désigné par un itérateur

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 15/ 46

c1} Liste chainées

Les listes chainées sont, comme les tableaux dynamiques, des
SDA séquentielles, c’est-a-dire stockant des séquences
(ordonnées) d’éléments.

Par contre dans une liste chainée, I'acces direct & un élément
n’est pas possible, contrairement aux tableaux dynamiques.

Les listes simplement chainées sont définies dans la bibliotheque
forward_list et se déclarent de fagcon similaire a des tableaux
dynamiques, par exemple

forward_list<int> maliste;

(quelques) méthodes des listes chainées :

Type& front () retourne le premier élément de la liste
void push_front (Type) ajoute un élément en téte de liste
void pop_front () supprime le premier élément

void insert (iterator, Type) insertion avant un élément de
la liste désigné par un itérateur

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 16/ 46

Tableaux dynamiques : petit complément

Pour accéder directement a un élément d’'un tableau dynamique
(vector) on utilise 'opérateur [] :tab[i].

Il existe une autre méthode pour cet accés : at (n) qui, ala
différence de [n], lance une I'exception out_of_range (de la
bibliothéque <stdexcept>) si n n'est pas un index correct.

Exemple

Exemple :

#include <vector>
#include <stdexcept>

vector<int> v(5,3); // 3, 3, 3, 3, 3
int n(12);
try {
cout << v.at(n) << endl;
}
catch (out_of_range) {

cerr << "Erreur : " << n << " n’est pas correct pour v"
<< endl
<< "qui ne contient que " << v.size()
<< " elements." << endl;
©EPFL 2024-25
Jamila Sam }
& Jean-Cédric Chappelier
[
=PFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 17 /46

Ensembles — Exemple

Les ensembles (au sens mathématique) sont implémentés dans la
bibliothéque <set>. lls ne peuvent cependant contenir que des
éléments du méme type, lesquels sont ordonnés par operator<.

(Pour des éléments de méme type mais non ordonnés, i.e. sans
operator<, on utilisera un unordered_set.)

On déclare un ensemble comme les autres containers, en
spécifiant le type de ses éléments, par exemple :
set<char> monensemble;

Les ensembles n’étant pas des SDA séquentielles, 'acces direct a
un élément n’est pas possible.

(quelques) méthodes des ensembles :
insert (Type) insere un élément s’il n'y est pas déja
erase (Type) supprime I'élément (s'il y est)
find (Type) retourne un itérateur indiquant I'élément a
recherché

OEPFL 202425 A noter que la bibliothéque <algorithm> fournit des fonctions

&:::“"l;_‘;f‘fli"a"”e"e' pour faire la réunion, l'intersection et la différence d’ensembles.
=

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 18/ 46

Ensembles — Exemple

#include <set>

généralités
set set<char> voyelles;

voyelles.insert
ot voyelles.insert
voyelles.insert
voyelles.insert
voyelles.erase('b’);
voyelles.insert (e’

~

14
); /#* n’insere pas ‘e’ car #

* 11 y est deja */

Comment parcourir cet ensemble ?

(unsigned int 1i(0);
cout << voyelles|[i]

for

i < voyelles.size();

++1)
<< endl;

ne fonctionne pas car c’est une SDA non-indexé (et méme

OEPFL 2024-25 non'sequen“e"e).
& Sean Chric appeler

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 19/46

Ensembles — parcours

généralités

Comment parcourir cet ensemble ?

Exemple

En ¢} cest facile :

for (auto const v : voyelles)
cout << v << endl;

Il y a aussi un autre moyen, plus avancé :

i Utilisation d’itérateurs

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 20/ 46

Itérateurs

Les itérateurs sont une SDA généralisant d’une part des acces
par index (SDA séquentielles) et d’autre part les pointeurs, dans le
cas de containers.

lls permettent :
» de parcourir de facon itérative les containers
» d’indiquer (i.e. de pointer sur) un élément d’un container

Il existe en fait 7 sortes d'itérateurs, mais nous ne parlons ici que
de la plus générale, qui permet de tout faire : lecture et écriture du
containers, aller en avant ou en arriere (accés quelconque en fait).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 21 /46

Itérateurs (2)

Un itérateur associé a un container c<type> se déclare
simplement comme C<type>::iterator nom;

Exemples :
vector<double>::iterator i;

set<char>::iterator 7;

Il peut s'initialiser grace aux méthodes begin () ou end () du
container, voire d’autres méthodes spécifiques, comme par
exemple find pour les containers non-séquentiels.

Exemples :
vector<double>::iterator i (monvect.begin());

set<char>::iterator Jj(monset.find(monelement));

S sam Lélément indiqué par l'itérateur i est simplement =i, comme pour
les pointeurs.

& Jean-Cédric Chappelier
cPrL
Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 22/ 46

Retour sur I’exemple des ensembles

généralités

Pour parcourir notre ensemble précédent, nous devons donc

faire :
Exemple for (set<char>::iterator i(voyelles.begin());
i != voyelles.end(); ++1)
“ cout << x1i << endl;

Exemple d'utilisation de find :

set<char>::iterator i(voyelles.find(’'c’));

if (i == voyelles.end())

cout
else
cout

<< Tcf <<

<< *1 <<

"n"est pas dans 1l’ensemble" << endl

"est dans 1l’ensemble" << endl;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 23 /46

Obiectifs COde complet de I’exemple

Description
générale
Containers #include <set>
généralités #include <iterator>
N #include <iostream>
using namespace std;
Exemple int main() {
set<char> voyelles;
voyelles.insert ("a’);
k et queue voyelles.insert (‘b’);
Algorithmes et voyelles.insert ('e’);
maths voyelles.insert ('i’);
Conclusion voyelles.insert ('a’); // ne fait rien car ’‘a’ y est deja
voyelles.erase('b’); // supprime ’b’
// parcours l’ensemble
for (set<char>::iterator i(voyelles.begin()); i!=voyelles.end(); ++1i)
cout << *x1i << endl;
// recherche d’un element
set<char>::iterator element (voyelles.find(’c’));
if (element == voyelles.end())
cout << "l’element n’est pas dans 1l’ensemble" << endl;
else
cout << xelement << " est dans 1l’ensemble" << endl;
return 0;
©EPFL 2024-25
Jamila Sam }

& Jean-Cédric Chappelier

E P F L Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 24 /46

Suppression d’'un élément d’un container

On a vu que tout container possédait une méthode

iterator erase(it)

permettant de supprimer un élément, mais...

Attention !on ne peut pas continuer a utiliser l'itérateur it sans
% autre!
(plus exactement : erase rend invalide tout itérateur et référence situé(e)
au dela du premier point de suppression)

Exemple d’erreur classique :
vector<double> v;

for (vector<double>::iterator i(v.begin()); 1 != v.end(); ++1i
if (cond(*1i)) v.erase(i);

(avec bool cond (double) ;)
n’est pas correct («<Segmentation fault»)

pas plus que :

for (vector<double>::iterator i(v.begin()); i != v.end(); ++1i)
©EPFL 2024-25
Jamila Sam if (cond(xi)) 1 = v.erase(i);

& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 25/ 46

Suppression d’un élément d’un container (2)

Ce qu’il faut faire c’est :

généralités

vector<double>::iterator next;

for (vector<double>::iterator i(v.begin()); 1 != v.end();
Exemple i = next) {
erase if (cond(*1i)) { next = v.erase(i); }

o else { next = ++1i; }

ou mieux en utilisant remove_if (ou remove) de
<algorithm>:

v.erase (remove_if (v.begin(), v.end(), cond), v.end());

mais qui sont de toutes facons «colteux» (O(v.size ()?)) (voir
iz san transparent suivant)

& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 26/ 46

Suppression d’un élément d’un container (3)

généralités

En effet, un tableau dynamique n’est pas la bonne SDA si I'on
fenoe veut détruire un élément au milieu et garder I'ordre
(utiliser plutdt des listes chainées pour cela)

Note : si I'on ne tient pas a garder I'ordre, on peut toujours faire :

for (unsigned int i(0); i < v.size(); ++1)
if (cond(v[il]l)) {

v[i] = v[v.size()-1];
v.pop_back () ;
771'_;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 27 /46

Tables associatives

Les tables associatives sont une généralisation des tableaux ou
les index ne sont pas forcément des entiers.

Imaginez par exemple un tableau que 'on pourrait indexer par des
chaines de caractéres et écrire par exemple
map tab["Informatique"]

On parle d’« associations clé—valeur »
Les tables associatives sont définies dans la bibliotheque <map>.

Elles nécessitent deux types pour leur déclaration : le type des «
clés » (les index) et le type des éléments indexé.

Par exemple, pour indexer des nombres réels par des chaines de
caracteéres on déclarera :
map<string, double> une_variable;

Si l'ordre (operator<) des clés n’importe pas, on utilisera une
©EPFL 2024-25
e unordered_map.

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 28/ 46

@+ Tables associatives — exemple

Description
générale
Containers #include <map>
généralités #include <string>
N #include <iostream>
B using namespace std;
Exemple int main ()
{
map map<string,double> moyenne;
ketqg
Algorithmes et moyenne ["Informatique"] = 5.5;
maths moyenne ["Physique"] = 4.5;
Conclusion moyenne ["Histoire des maths"] = 2.5;
moyenne ["Analyse"] = 4.0;
moyenne ["Algebre"] = 5.5;
// parcours de tous les elements
for (map<string,double>::iterator i (moyenne.begin());
i != moyenne.end(); ++1i)
cout << "En " << i->first << ", j’ai " << i->second
<< " de moyenne." << endl ;
// recherche
cout << "Ma moyenne en Informatique est de ";
cout << moyenne.find("Informatique")->second << endl;
return 0;
©EPFL 2024-25
Jamila Sam }

& Jean-Cédric Chappelier

E P F L Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 29 /46

Piles et files

Les piles ont déja été vues au dernier cours. Pour utiliser celles de
laSTL: #include <stack>

Les files d’attente sont des piles ou c’est le premier arrivé
(empilé) qui est dépilé le premier. Elles sont définies dans la
et bibliothéque <queue>
Une pile de type type se déclare par stack<type> et une file
d’'attente par queue<type>. Par exemple :
stack<double> une_pile;
queue<char> attente;

méthodes :
Type top () accede au premier élément (sans I'enlever)
void push (Type) empile/ajoute
void pop () dépile/supprime
Samiacan bool empty () teste si la pile/file est vide

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliothéques d’outils — 30/ 46

Piles — exemple

reprise de I'exemple du dernier cours :
#include <stack>
using namespace std;

généralités

Exemple bool check (string s) {
stack<char> p;

stack et queue for (unsigned int i(0); i < s.size(); ++i) {
i€ ((s[i] == " (") || (s[i] == "["))
p.push(s[i]);
else if (s[i] == ")") {
if ((!p.empty()) && (p.top() == ("))
p.pop () ;
else
return false;
} else if (s[i] == "1") {
if ((!p.empty()) && (p.top() == "["))
p.pop();
else
return false;
}
}
©EPFL 2024-25 return p.empty ();

Jamila Sam }
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 31 /46

Algorithmes

Algorithmes et La bibliothéque algorithm (i.e. #include <algorithm>)
e définit différents types d’algorithmes généraux :
» de séquencement
quelques exemples : for_each, find, random_shuffle,
copy
> de tris
sort, mais aussi bien d’autres
» numériques
inner_product, partial_sum, adjacent_difference

3 exemples ici :

» find
» copy etles output_iterators
» sort
omprL 20225 pour les autres : référez-vous a la documentation

Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 32/ 46

find

find est un algorithme général permettant de faire des
Algarithmes et recherches dans (une partie d’)un container.

maths Lz
Son prototype général est :
iterator find(iterator debut, iterator fin, Type valeur);
qui cherche valeur entre debut (inclu) et £in (exclu). Il retourne
un itérateur sur le contenu correspondant a la valeur recherchée
ou fin si cette valeur n’est pas trouvée.
Exemple :
list<int> uneliste;
uneliste.push_back(3);
uneliste.push_back(1l);
uneliste.push_back(7);
list<int>::iterator result (find(uneliste.begin(),
uneliste.end(), 7));
if (result != uneliste.end()) cout << "dans la liste";
else cout << "pas dans la liste";
v cout << endl;
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 33 /46

copy

copy est un algorithme général pour copier (une partir d’)un
Algorithmes et container dans un autre.

maths

Son prototype général est :

OutputIterator copy(InputlIterator debut, Inputlterator fin,
OutputIterator resultat);

qui copie le contenu compris entre debut (inclus) et £in (exclus)
vers resultat (inclus) et les positions suivantes (itérateurs).

La valeur de retour est resultat + (fin - debut).

pas d’insertion : il faut absolument que resultat ait (i.e. pointe

%. Attention !Notez bien que cela copie des éléments, mais ne fait
sur) la place nécessaire !

Exemple :
copy (unensemble.begin (), unensemble.end(), untableau.begin());
CEPFL 202425 Notez que I'on peut ainsi copier des données d’'une SDA dans une autre

& Jean-Cédric Chappelier

SDA d’un autre type.
EPFL P

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 34 /46

copy (2)

Algorithmes et
maths

copy peut étre tres utile pour afficher le contenu d’un container

sur un flot en utilisant un ostream_iterator (je ne donne qu’'un

exemple ici :)

copy (container.begin (), container.end(),
ostream_iterator<int> (cout, ", "));

container contenant ici des int, son contenu sera affiché sur

cout, séparé par des’,

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 35/ 46

€ copy - Exemple complet

D iption
g ale

Containers

#include <iostream>
Algorithmes et #include <set>

maths #include <vector>
#include <iterator>

Conclusion
using namespace std;
int main() {
set<double> unensemble, unautre;
unensemble.insert (1.1);
unensemble.insert (2.2);
unensemble.insert (3.3);
// copy (unensemble.begin(), unensemble.end(), unautre.begin());
// ne fonctionne pas ("assignment of read-only location")
// car unautre n’a pas la taille suffisante.
vector<double> untableau (unensemble.size()); // prevoit la place
copy (unensemble.begin (), unensemble.end(), untableau.begin());
// output
cout << "untableau = ";
copy (untableau.begin (), untableau.end(),
ostream_iterator<double> (cout, ", "));
cout << endl;
©EPFL 2024-25
Jamila Sam return 0;
& Jean-Cédric Chappelier }

cPFL

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 36/ 46

sort

Algorithmes et
maths

sort permet de trier des SDA implémentées sous forme de
containers

La version la plus simple de tri est (il y en a d’autres) :

void sort (iterator debut, iterator fin)
qui utilise operator< des éléments contenus dans la partie du
container indiquée par debut et fin
(les objets qui y sont stockés doivent donc posséder cet
opérateur)

Exemple :
list<double> uneliste;

sort (uneliste.begin(), uneliste.end());

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 37 /46

Nombres Complexes

La bibliotheque <complex> définit les nombres complexes.

Algorithmes et
maths

lls se déclarent par complex<double>. lls possédent un
constructeur a 2 arguments permettant de préciser les parties
réelle et imaginaire, e.g.

complex<double> c¢(3.2,1.4), 1i(0,1);

Par contre, il n’existe pas de constructeur permettant de créer un
nombre complexe a partir de ses coordonnées polaires.

En revanche, la fonction polar, qui prend comme parametres la
norme et 'argument du complexe a construire, permet de le faire.
Cette fonction renvoie le nombre complexe nouvellement
construit :

¢ = polar(sqgrt(3.0), M_PI / 12.0);

Les méthodes des nombres complexes sont real () qui retourne
la partie réelle, imag () qui retourne la partie imaginaire, et bien
GEPFL 202425 s(r les operateurs usuels.

Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 38/ 46

Nombres Complexes (2)

Algorithmes et

maths Ce qui est plus inattendu c’est que les opérations de norme,
argument, et conjugaison n’ont pas été implémentées sous forme
de méthodes, mais de fonctions :

double abs (const complex<double>g) retourne la norme (au
sens frangais du terme) du
nombre complexe

double norm(const complex<double>&) retourne le carré de la norme

double arg(const complex<double>s&) retourne I’argument du
nombre complexe
complex<double> conj(const complex<double>&)

retourne le complexe conjugué

La bibliotheque fournit de plus les extensions des fonctions de
base (trigonométriques, logarithmes, exponentielle) aux nombres
complexes.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 39/ 46

Algorithmes et
maths

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Détails de <cmath>

Quelques fonctions définies dans la bibliothéque <cmath> :

abs
acos
asin
atan
ceil
cos
cosh
exp
floor
log
logl0
pow (x,V)

sin
sinh
sgrt
tan
tanh

valeur absolue

arccos

arcsin

arctan

[x], entier supérieur

COos

cosinus hyperbolique

exp

| x], entier inférieur

In, logarithme népérien
log, logarithme en base 10
XY = exp(y In x) — (préférez la multiplication pour les faibles
puissances entiéres)

sin

sinus hyperbolique
tangente hyperbolique

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 40/ 46

Algorithmes et
maths

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Détails de <cmath> (2)

Quelques constantes souvent fournies (mais non I1SO) :

e
loga(e)
log1o(e)
In(2)
In(10)

= §§|m ST F NI IS

M_FE
M_LOG2E
M_LOG10E
M_LN2
M_LN10
M_PI
M_PI_2
M_PI_4

M 1 _PI

M _2_PI
M_2_SQRTPI
M_SQRT2
M_SQRT1_2

Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 41 /46

Algorithmes et
maths

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Nombres aléatoires

La génération de nombres au hasard sur ordinateur se fait avec
des genérateurs dit « pseudo-aléatoires » qui pour une valeur
initiale donnée (appelée « graine » [« seed » en anglais]) donnent
toujours la méme séquence « aléatoire » (suivant une distribution
de probabilité choisie).

Utiliser la méme graine peut étre utile pour déverminer un
programme utilisant des nombres aléatoires.

Pour avoir une série de nombres aléatoires différente a chaque
utilisation du programme, il faut utiliser une graine différente a
chaque fois.

[Méme si ce n'est pas terrible,] Cela se fait souvent en utilisant
comme graine la valeur de I'horloge de I'ordinateur a cet instant.

Une autre solution consiste a tirer la graine (voire la séquence
elle-méme) depuis un périphérique matériel suffisement
aléatoire (« random device ») : (micro-)déplacement de la souris,
température du processeur, ...

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 42/ 46

Nombres aléatoires (2)

Algorithmes et Avant C++11, le seul outil standard pour la génération de nombres

e aléatoires était rand, un générateur uniforme de nombres
entiers. Des outils non standards venaient compléter la matériel a
disposition.

int rand () tire un nombre entier entre 0 et RAND_MAX
(2147483647 dans I'état actuel)

La graine de rand () se change avec
void srand(unsigned int graine)

Exemple d'initialisation avec I'horloge :

#include <ctime>
#include <cstdlib>
using namespace std;

srand (time (0));

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 43 /46

c+12 Nombres aléatoires (3)

Algorithmes et
maths

Dans la bibliotheéque <random> (¢a+1}), il existe différents
générateurs de nombres pseudo-aléatoires et différentes
distributions de probabilités.

Les deux doivent étre combinés pour pouvoir effectuer une série
de tirage.

Ci-apres un exemple simple pour tirer de fagon uniforme un
nombre aléatoire entier entre min et max.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E Pi- L Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 44 /46

c»1 Nombres aléatoires : exemple

Description

générale #include <iostream>
Containers #include <functional> // pour bind()
Algorithmes et #include <random>
maths using namespace std;
Conclusion
int main ()

{
// par exemple (un d’e ?)
int min(1); int max (6);

// distribution uniforme entre min et max
uniform_int_distribution<int> distribution (min, max);

random_device rd; // pour la graine
unsigned int graine (rd());

// choix du generateur et initialisation (graine)
default_random_engine generateur (graine);

auto tirage (bind(distribution, generateur)); // esoterisme

for (int i(0); i < 10; ++i) { // 10 tirages

cout << tirage() << endl;
©EPFL 2024-25
Jamila Sam }

& Jean-Cédric Chappelier return 0;

E P F L } Programmation Orientée Objet — Cours 25 : Bibliothéques d'outils — 45/ 46

Ce que j’ai appris aujourd’hui

conclusion Qu'il existe beaucoup d'outils prédéfinis dans la bibliothéque
standard de C++

Le but n'est évidemment pas les connaitre tous par cceur, mais de
savoir qu’ils existent pour penser aller chercher dans la
documentation les informations complémentaires.

La suite

» Révisions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 25 : Bibliotheques d'outils — 46/ 46

	Objectifs
	Description générale
	Containers
	généralités
	list
	vector
	set
	iterator
	Exemple
	erase
	map
	stack et queue

	Algorithmes et maths
	Conclusion

