Etat des lieux

Programmation Orientée Objet :
z ; Nous voici donc arrivés au terme des cours avec support MOOC.
Structures de Données Abstraites PP
& Nous avons abordé jusqu’ici :
Fonctions et Classes Génériques 1. les bases de la programmation procédurale ;
) 2. les bases de la programmation orientée objets.
Jamila Sam = Il nous reste a aborder quelques thémes
d’approfondissement : structures de données et «templates»
Laboratoire d’Intelligence Atrtificielle ainsi qu’un survol de la librairie standard
Faculté 1&C
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 1/54 EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 2/54
nthé J H nthé J H
syninese Qu’avons nous vu en programmatlon ? synnese Qu’avons nhous vu en programmatlon ?
programmer c’est décomposer une tache a automatiser en une
séquence dinstructions (traitements} et des donnees programmer c’est décomposer une tache a automatiser en une
opSrent sut séquence d’instructions (traitements) et des données
Catements)
A Algorithme S.D.A.
influencent Traitements Données
Variables
en programmation orientée objets, on regroupe dans le méme Expressions & Opérateurs
objet les traitements et les données qui lui sont spécifiques Structures de controle
(principe d’encapsulation) Fonctions Portée
OBIET Chaines de caractéres
oot . Tableaux statiques
TR attributs | méthodes)
ABS \ Tableaux dynamiques
Interface Structures
(partie visible) Pointeurs
A Entrées/Sorties
Détails d’
OEPFL 202425 Implémentation OEPFL 202425
& Jean-Cédric Chappelier (partie interne/cachée) & Jean-Cédric Chappelier
EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 3/54 EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 3/54

= Qu’avons nous vu en programmation ? Objectifs du cours d’aujourd’hui

Objectifs

en programmation orientée objets, on regroupe dans le méme
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

» Introduction aux structures de données abstraites :

Objet) o
Encapsulation et Abstraction > Listes chainées
Classes > Piles
Héritage simple/multiple » Introduction & la programmation générique :
Polymorphisme > Exemples
Classes abstraites/virtuelles > Déclaration de modéles
Résolution des collisions de noms > Instanciation
Traitements Données > Spécialisation
Méthodes Attributs » Compilation séparée
Constructeurs & Destructeurs Appels aux constructeurs
Const des attributs (hérités)
Virtuelles (pures) Statiques
Surcharge d’opérateurs(interne/externe)
Privés/protégés/publiques
S sam Hérités/cachés (: :) Samiasam
& Jean-Cédric Cl & Jean-Cédric Chappelier
EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 3/54 EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 4 /54
Plan Pourquoi modeliser les données ?
S.D.A. S.D.A.
Lélaboration d’un algorithme est grandement facilité par
I'utilisation de structures de données abstraites, de plus haut
» Structures de données abstraites niveau, et de fonctions de manipulations associées.
> Listes) . - .
> Piles Une structure de données doit modéliser au mieux les
> Programmation générique /nforrlr(;egt/’ons a traiter pour en faciliter le traitement par I'algorithme
considéré.

> Programmation générique : introduction, exemples

» Déclaration des modeéles . s , .

> Instanciation Choisir les bons modéeles de données est aussi important que le
>

>

Spécialisation choix de bons algorithmes
Compilation séparée
Algorithme et structure de données abstraite sont intimement liés :

Programme = algorithme + données

(©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

[- P [- L [- P [- L
(=1 Programmation Orientée Objet — Cours 24 : SDA & Templates — 5/54 (=1 ad Programmation Orientée Objet — Cours 24 : SDA & Templates — 6 /54

S.DA.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

S.D.A.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

C’est quoi une « structure de données
abstraite » ?

La notion de structure de données abstraite (S.D.A.) est
indépendante de tout langage de programmation

Une S.D.A. est un ensemble organisé d’informations (ou données)
reliées logiqguement et pouvant étre manipulées non seulement
individuellement mais aussi comme un tout.

Exemples généraux :
tableau (au sens général du terme)
contenu : divers éléments de types a préciser
interactions : demander la taille du tableau, accéder
(lecture/écriture) a chaque élément
individuellement, ...
vecteur (au sens général, pas C++) : formalisation
mathématique d’espace vectoriel sur un corps 7
contenu : n coordonnées (éléments de %)
interactions : les propriétés élémentaires définissant
un espace vectoriel
Exemple informatique élémentaire :

Programmation Orientée Objet — Cours 24 : SDA & Templates — 7 /54

Vous connaissez déja des structures de données abstraites, trés

Spécifications des S.D.A. [2]

Au niveau formel (modéle), on veut généraliser cette idée

« d’objets » manipulables par des opérateurs propres, sans
forcément en connaitre la structure interne et encore moins
l'implémentation.

Par exemple, vous ne pensez pas un int comme une suite de
32 bits, mais bien comme un « entier » (dans un certain intervalle)
avec ses opérations propres : +, —, x, /

Une structure de données abstraite définit une abstraction des
données et cache les détails de leur implémentation.

abstraction : identifier précisément les caractéristiques de I'entité
(par rapport a ses applications), et en décrire les propriétés.

Programmation Orientée Objet — Cours 24 : SDA & Templates — 9/54

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

S.D.A.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Spécifications des
structures de données abstraites

Une S.D.A. est caractérisée par :
» son contenu
> les interactions possibles (manipulation, acces, ...)

Du point de vue informatique, une structure de données abstraite
peut étre spécifiée a deux niveaux :

> niveau fonctionnel / logique : spécification formelle des
données et des algorithmes de manipulation associés

> niveau physique (programmation) : comment est
implémentée la structure de données abstraite dans la
mémoire de la machine

= déterminant pour 'efficacité des programmes utilisant ces
données.

Programmation Orientée Objet — Cours 24 : SDA & Templates — 8/54

Spécifications des S.D.A. [3]

Une structure de données abstraite modélise donc I'« ensemble
des services » désirés plutot que I'organisation intime des
données (détails d'implémentation)

On identifie usuellement 4 types de « services » :
1. les modificateurs, qui modifient la S.D.A.
2. les sélecteurs, qui permettent « d’interroger » la S.D.A.
3. les itérateurs, qui permettent de parcourir la structure
4. les constructeurs

Exemple :
tableau dynamique

modifieur : affectation d’'un élément (t [i]=a)
sélecteur : lecture d’'un élément (t [1])

sélecteur : le tableau est-il vide ? (t . size () == 0)
itérateur : index d’un élément ([i] ci-dessus)

Programmation Orientée Objet — Cours 24 : SDA & Templates — 10/54

Divers exemples de S.D.A. Plan

S.D.A.
Listes
Il'y a beaucoup de structures de données abstraites en
Informatique.
Dans ce cours, nous n’allons voir que les 2 plus fondamentales » Structures de données abstraites
(apres les tableaux) : > Listes
> les listes > Piles
> et les piles » Programmation générique
> Programmation générique : introduction, exemples
Autres : > Déclaration des modéles
H J . e > . .
> files d’attente (avec ou sans priorité) Instanciation
. > Spécialisation
> multi-listes » Compilation séparée
» arbres (pleins de sorte...)
> graphes
> tables de hachage
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
“P-L _ “P-L o
=iy Programmation Orientée Objet — Cours 24 : SDA & Templates — 11/54 =iy Programmation Orientée Objet — Cours 24 : SDA & Templates — 12/54
Listes Listes
Listes Listes
Exemple concret :
Spécification logique : o)]
Ensemble d’éléments successifs (pas d’accés direct), ordonnés visionneuse stereo (essayez d'acceder
ou non a la 3e image directement, sans passer par
la2el)
Interactions : %
> accés au premier élément (sélecteur) ®)"‘ 0)
> accés a I'élément suivant d’un élément (sélecteur) =
» modifier I'élément courant (modificateur) ' B
» insérer/supprimer un élément apres(/avant) I'élément courant _ _
(modificateur) Exemple informatique :
> tester sila liste est vide (sélecteur) (a(b(c(d))
> parcourir la liste (itérateur) Une liste peut étre vu comme une structure récursive :
liste = élément + liste OU liste = vide
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

=PFL EPFL
=i Programmation Orientée Objet — Cours 24 : SDA & Templates — 13/54 (=1 ad Programmation Orientée Objet — Cours 24 : SDA & Templates — 14 /54

Listes

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Listes

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Réalisations d’une liste

> réalisation statique :

tableau

» réalisation dynamique (liste chainée) :
vector (mais inconvénient 1 ci-apres)
ou

classe :
La bonne solution :
class Cellule;
typedef Cellulex PtrCell;

Pourquoi les listes dynamiques ?

Listes

Les tableaux sont un type de données trés utile en programmation
mais présentent 2 limitations :

1. les données sont contigués (les unes derriéres les autres)
et donc linsertion d’un nouvel élément au milieu du tableau
demande la recopie (le décalage) de tous les éléments
suivants.
= insertion en J(n)

2. pour les tableaux statiques, augmenter la taille (par exemple
si elle n’est pas connue a priori) nécessite la création d’'un
nouveau tableau

class ListeChaineeCellule { = 0(n)
type_el donnee;
ListeChaineex PtrCell suivant;
}
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
[- P [- L
Programmation Orientée Objet — Cours 24 : SDA & Templates — 15/54 (St Programmation Orientée Objet — Cours 24 : SDA & Templates — 16/54

Complexité optimale des opérations
élémentaires sur les listes

insérer un élément : (1) (temps constant)
supprimer un élément : (1) (temps constant)

calculer la longueur : ©'(n) (temps fonction linéaire en n)

(voire ¢/(1) si le stockage de cette valeur est effectué,
en particulier si « longueur » a été spécifiée dans les « ser-
vices » de la SDA « liste »)

vider la liste : o(n)

parcourir la liste : o(n)

Exemples d’implémentation des opérations
élémentaires sur les listes

Listes
A des fins pédagogiques, voici une implémentation simple des
listes dynamiques de double sous forme de listes chainées :

class Cellule;
typedef Cellulex PtrCell;
const PtrCell LISTE_VIDE(O);
// Une cellule de la liste
class Cellule{
public:
Cellule (double un_double)
:donnee (un_double), suite(LISTE_VIDE) {}
Cellule (double un_double, PtrCell suite)
:donnee (un_double), suite(suite) {}
PtrCell getSuite () {return suite;};
double getDonnee () {return donnee;};
void setSuite (PtrCell une_suite) {suite = une_suite;}
private:
double donnee; // la donnee
PtrCell suite; // le pointeur sur la cellule

// suivante
©EPFL 2024-25 } .
Jamila Sam ’
& Jean-Cédric Chappelier

cpr-
Programmation Orientée Objet — Cours 24 : SDA & Templates — 17 /54 = Pi' L Programmation Orientée Objet — Cours 24 : SDA & Templates — 18/54

Exemples d’implémentation des opérations
élémentaires sur les listes (2)

Listes

// Le type Liste chainee

class Liste({

public:

Liste () :queue (LISTE_VIDE) {}
bool est_vide();
void insere (double un_double);
void insere (Cellule& cell, double un_double);
unsigned int taille();
private:
PtrCell tete; //un pointeur sur le premier element
PtrCell queue; //un pointeur sur le dernier element

}i
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 19/54

| ion d’un élé d li
nsertion d’'un element dans une liste
chainée
Listes
ca‘x\l Pour les forward_ list:
> linsertion en téte de liste s’appelle push_front
> et l'insertion aprés un élément donné insert_after, mais
nécessite la notion d’itérateur que nous verrons un peu plus
loin.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
=PFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 21/54

Exemples d’insertion d’un élément

> en queue de liste

Listes

void Liste::insere (double un_double)
{
if (est_vide()) {
tete = new Cellule (un_double) ;
queue = tete;
}
else
insere ((xqueue), un_double);

> aprés un élément donné de la liste

void Liste::insere(Cellule& existante,
double un_double)
{
PtrCell suite(existante.getSuite());
PtrCell c(new Cellule (un_double, suite));
existante.setSuite (c);
if (c—>getSuite() == LISTE_VIDE) gueue

Ci
©EPFL 2024-25

Jamila Sam
& Jean-Cédric Cl

c=PrL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 20 /54

Exemple de calcul de la longueur

Listes

unsigned int Liste::taille ()
{
unsigned int taille (0);
PtrCell courant (tete);

while (courant != LISTE_VIDE)
{
++taille;
courant = courant->getSuite();

}
return taille;

}

Exercice : quelle solution serait plus efficace ?

c+*11 Note : Attention les forward_1ist, n'ont pas de fonction
size () !

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 22 /54

Implémentations existantes des listes Plan

chainées
Listes
Piles
¢c+1) Les listes (simplement) chainées existent depuis C++11 : > Struct.ures de données abstraites
#include <forward list> > LI_SteS
> Piles
forward_list<int> ma_liste({ 6, 1, 5, -23, 3 }); » Programmation générique
> Programmation générique : introduction, exemples
for (auto element : ma_liste) { cout << element << endl; } » Déclaration des modeles
» Instanciation
ma_liste.push_front (877); | 2 Spécialisation
» Compilation séparée
Note : Les listes doublement chainées existent depuis C++98 :
#include <list>

©EPFL 2024-25 ©EPFL 2024-25

Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier

=PFL =PFL

=iy Programmation Orientée Objet — Cours 24 : SDA & Templates — 23 /54 =iy Programmation Orientée Objet — Cours 24 : SDA & Templates — 24 /54

Plan Piles
, Spécification :

Ples Ples Une pile est une structure de données abstraite dynamique
contenant des éléments homogenes (de type non précisé) a 1
point d’acces et permettant

» d’ajouter une valeur a la pile (empiler ou push);
» de lire la derniere valeur ajoutée;
» d’enlever la derniére valeur ajoutée (dépiler ou pop);
> de tester si la pile est vide.
On ne « connait » donc de la pile que le dernier élément empilé
(son sommet).
Spécification physigue :
liste chainée
ou

©EPFL 2024-25 ©EPFL 2024-25 tableau dynamlque (VeCtOf)

ia\rlrg‘aan—scagc‘ir\c Chappelier ;;rg;?g;m Chappelier

EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 25/54 EPFL Programmation Orientée Objet — Cours 24 : SDA & Templates — 26 /54

Piles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Piles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Piles : exemples

Exemples concrets :
» une pile d’assiettes

> poupées russes

Programmation Orientée Objet — Cours 24 : SDA & Templates — 27 /54

Exemple d’utilisation des piles

Le probléeme des parenthéses : étant donnée une expression avec
des parenthéses, est-elle bien ou mal parenthésée ?

((a+b)xc—(d+4)*(5+(a+c)))*(c+(d+(e+5xg)«f)*a)
(correct)

(a+b)(
(incorrect)

Encore un peu plus complexe : différentes parenthéses
Exemple avec [et (

(IDIOCOM] e correct

(D] &= incorrect

Autres exemples d’utilisation des piles (non traités ici) :
> tours de Hanoi

> notation postfixée (ou « polonaise inverse ») :
42+ 5«
(= 5% (4+2))

Programmation Orientée Objet — Cours 24 : SDA & Templates — 29/54

Piles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Piles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Piles : exemples (2)

Exemple d'utilisation (formelle) :

empiler x

empiler a

dépiler

empiler b

empiler y

dépiler

Programmation Orientée Objet — Cours 24 : SDA & Templates — 28/ 54

Tant que lire caractére ¢
Sicest (ou [
empiler ¢
Sinon
Sicest) ou]
Si pile vide
ECHEC
Sinon
¢’ + lire la pile
Si ¢ et (¢
pondent
dépiler
Sinon
ECHEC
Si pile vide
OK
Sinon
ECHEC

corres-

Programmation Orientée Objet — Cours 24 : SDA & Templates — 30/ 54

o [e

o<

Vérification de parenthésage

Exemple

Entrée : ([)]

empile (| (]

empile [E

lu=),top= [
— ne correspond pas
= ERREUR

Deuxiéme Exemple

Entrée: ([() 1)
Piles en1pHe (

empile [

empile (

lu) — correspond — dépile

lu] — correspond — dépile

lu) — correspond — dépile

©EPFL 2024-25

pile vide = OK

I_(, Piles

L]
L]

©EPFL 2024-25

fﬂ;—scagiric Chappelier ia.;r:;—scaézric Chappelier
E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 31/54 E PF L
code C++ (2)
Piles
Programmation
générique
Avec le standard stack :
Pile = stack<Type>, par exemple stack<char>
empile =push , par exemple p.push (s[1i])
est_vide = empty , par exemple p.empty ()
depile =pop , par exemple p . pop ()
et top =top , par exemple p.top ()
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
cPFL cPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 33/54

code C++

bool check(string s) {
Pile p;
for (unsigned int i (0);
if ((s[i] == " (") ||
p.empile(s[i]);
else if (s[i] == ")")
if ((!'p.est_vide())
p.depile();
else
return false;
} else if (s[i]
if ((!p.est_vide())
p.depile();
else
return false;

== 7]’

}
}
return p.est_vide();

}

i < s.size(); ++i) {
(s[1] == "1"))

{

&& (p.top() == "("))
) A

&§& (p.top() == "1["))

Plan

Programmation Orientée Objet — Cours 24 : SDA & Templates — 32/54

» Structures de données abstraites

> Listes
> Piles

» Programmation générique

» Programmation générique : introduction, exemples
Déclaration des modeles

Spécialisation

>

> Instanciation

>

» Compilation séparée

Programmation Orientée Objet — Cours 24 : SDA & Templates — 34 /54

Programmation générique : introduction

Une cellule de notre liste chainée de tout a I'heure se présentait
comme suit :

// Une cellule de la liste
class Cellule {
public:
Y
private:
double donnee; // une donnee de type double
PtrCell suite;

Programmation
générique

}i

\ 7z
A

'¢1($
e

== c’est exactement le méme code pour Liste et Cellule
sauf qu’il faut remplacer le type de la données pouvant étre
stockée dans une cellule

s Duplication de code!!

Si I'on veut une liste de int ?

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 35/54

Un exemple

Prenons un exemple simple pour commencer :
une fonction échangeant la valeur de 2 variables.

Programmation
générique

Par exemple avec 2 entiers vous écririez une fonction comme :

// Echange la valeur de ses arguments
void echange (ints i, ints) {

int tmp (i) ;

i=73;

j = tmp;

Mais vous vous rendez bien compte que vous pourriez faire la
méme chose (le méme algorithme) avec deux double, ou méme
deux objets quelconques, pour peu qu’ils aient un constructeur de
copie (Ob5j tmp (i) ;) et un opérateur de copie (operator=).

©EPFL 2024-25

Jamila Sam

& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 37 /54

Programmation
générique

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation
générique

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation générique

Lidée de base est de passer les types de données comme
parametres pour décrire des traitements trés généraux

(« génériques »)

Il s’agit donc d’un niveau d’abstraction supplémentaire.

De tels modéles de classes/fonctions s’appellent aussi
classes/fonctions génériques ou patrons (chablons), ou encore
« template ».

Vous en connaissez déja sans le savoir. Par exemple la « classe »
vector n'est en fait pas une classe mais un modele de classes :
c’est le méme modele que I'on stocke des char
(vector<char>), des int (vector<int>), ou tout autre objet.

Programmation Orientée Objet — Cours 24 : SDA & Templates — 36 /54

Exemple, suite...

Lécriture générale serait alors quelque chose comme :

// Echange la valeur de ses arguments
void echange (Type& i, Type& J) |

Type tmp (i);

i=73i

j = tmp;
}

ol Type est une représentation générique du type des objets a
échanger.

La facon exacte de le faire en C++ est |a suivante :

// Echange la valeur de ses arguments
template<typename Type>
void echange (Type& i, Type& j) {

Type tmp(1);

i=73;

J = tmp;

Programmation Orientée Objet — Cours 24 : SDA & Templates — 38/54

...et fin

On pourra alors utiliser la fonction echange avec tout type/classe
pour lequel le constructeur de copie et 'opérateur d’affectation (=)
sont définis.

Programmation
générique

Programmation
générique

Par exemple :

int a(2), b((4);
echange (a,b) ;

double da(2.3),
echange (da, db) ;

db(4.5);

vector<double> va,
echange (va, vb) ;

vb;

string sa("ca marche"),
echange (sa, sb);

sb ("coucou") ;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

©EPFL 2024-25
Jamila Sam

c=PrL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 39/54

Généralisation aux classes (2)

et par exemple créer la classe « paire st ring—double » :
Paire<string, double>

Programmation
générique

Déclaration de
modeles

ou encore la classe « paire char—unsigned int »:
Paire<char,unsigned int>

Note : un tel modéle de classe existe dans la librairie standard :
pair (définidans <utility>).

Les modeéles de classes sont donc un moyen condensé d’écrire
plein de classes potentielles a la fois.

(de méme que les modeéles de fonctions/méthodes sont un moyen
condensé d’écrire plein de fonctions/méthodes potentielles a la
fois)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

©EPFL 2024-25
Jamila Sam

c=PrL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 41/54

Généralisation aux classes

Ce que I'on a fait ici avec une fonction, on peut le généraliser a
n’'importe quelle classe.

On pourrait
par exemple vouloir créer une classe qui réalise une paire d’objets :

template<typename T1l, typename T2>
class Paire {
public:
Paire (const Tl& un,
: premier (un), second(deux)

const T2& deux)

{}

virtual ~Paire () {}

Tl getl() const { return premier; }

T2 get2 () const { return second; }

void setl (const Tl& val) { premier = wval; }
void set2 (const T2& val) { second = val; }

protected:
Tl premier;
T2 second;
bi

& Jean-Cédric Chappelier

Programmation Orientée Objet — Cours 24 : SDA & Templates — 40/54

Déclaration d’'un modele

Pour déclarer un modeéle de classe ou de fonction, il suffit de faire
précéder sa déclaration du mot clé template suivit de ses
arguments (qui sont donc des noms génériques de type) suivant
la syntaxe :
template<typename noml, typename nomZ2, ...>

Exemple :

template<typename T1,
class Paire {

typename T2>

Les types ainsi déclarés (parametres du modéle) peuvent alors
étre utilisés dans la définition qui suit, exactement comme tout
autre type.
Note : on peut aussi utiliser le mot class a la place de typename,
par exemple :
template<class T1,
class Paire {

class T2>

& Jean-Cédric Chappelier

Programmation Orientée Objet — Cours 24 : SDA & Templates — 42/54

Déclaration de
modeles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Déclaration de
modeles

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Déclaration d’un modele (2)

Il est également possible de définir des types par défaut, avec la
méme contrainte que pour les paramétres de fonction : les valeurs
par défaut doivent étre placées en dernier.

Exemple :

template<typename T1l, typename T2 = unsigned int>

class Paire {

qui permettrait de déclarer la classe « paire char—unsigned int »
simplement par :
Paire<char>

Programmation Orientée Objet — Cours 24 : SDA & Templates — 43/54

Définitions externes des méthodes de
modeles de classes

Exemple :

template<typename T1,
public:
Paire(const Tlg,

typename T2> class Paire {
const T2¢);
i

// definition du constructeur
template<typename T1l, typename T2>

// le constructeur du modele de classe Paire
// parametr’e par Tl et T2
Paire<T1l,T2>::Paire(const Tl& un,
second (deux) { }

const T2& deux)
premier (un),

Programmation Orientée Objet — Cours 24 : SDA & Templates — 45/54

Déclaration de
modeles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Instanciation

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Définitions externes des méthodes de
modeles de classes

Si les méthodes d’un modéle de classes sont définies en dehors
de cette classe, elle devront alors aussi étre définies comme
modele et étre précédées du mot clé template, mais...

...l est de plus absolument nécessaire d’ajouter les
parametres du modele (les types génériques) au nom de la
classe

[pour bien spécifier que dans cette définition c’est la classe qui est en
modele et non la méthode.]

= exemple sur le transparent suivant

Programmation Orientée Objet — Cours 24 : SDA & Templates — 44 /54

Instanciation des modeles

La définition des modéles ne génére en elle-méme aucun code :
c’est juste une description de plein de codes potentiels.

Le code n’est produit que lorsque tous les parametres du modéle
ont pris chacun un type spécifique.

Lors de l'utilisation d’'un modéle, il faut donc fournir des valeurs
pour tous les parameétres (au moins ceux qui n’ont pas de valeur
par défaut). On appelle cette opération une instanciation du
modele.

Linstanciation peut étre implicite lorsque le contexte permet au
compilateur de décider de l'instance de modéle a choisir.

Par exemple, dans le code :

double da(2.3), db(4.5);

echange (da, db) ;
il est clair (par le contexte) qu'il s’agit de I'instance
echange<double> du modéle template<typename T> void
echange (T&, Ts) ; qu'il faut utiliser.

Programmation Orientée Objet — Cours 24 : SDA & Templates — 46 /54

Instanciation

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Spécialisation

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Instanciation des modéeles (2)

Mais dans la plupart des cas, on explicite I'instanciation lors de
la déclaration d’'un objet.

C’est ce qui vous faites lorsque vous déclarez par exemple
vector<double> tableau;

Il suffit dans ce cas de spécifier le(s) type(s) désiré(s) apres le
nom du modéle de classe et entre <>.

Linstanciation explicite peut aussi étre utile dans les cas ou le
contexte n’est pas suffisamment clair pour choisir.

Par exemple avec le modéle de fonction

template <typename Type>

Type monmax (const Type& x, const Type& y) {
if (x < y) return y;
else return x;

'appel monmax (3.14, 7); estambigu. Il faudra alors écrire

monmax<double> (3.14, 7);
Programmation Orientée Objet — Cours 24 : SDA & Templates — 47 /54

Modeéles, surcharge et spécialisation (2)

Mais les modéles (y compris les modéles de classes) offrent un
meécanisme supplémentaire : la spécialisation qui permet de
définir une version particuliere d’une classe ou d’'une fonction pour
un choix spécifique des paramétres du modele.

Par exemple, on pourrait spécialiser le second modéle ci-dessus
dans le cas des pointeurs sur des entiers :

template<> void affiche<int> (intx t) {
cout << "J’affiche le contenu d’un entier: ";
<< xt << endl;

La spécialisation d’'un modéle (lorsqu’elle est totale) se fait en :
> ajoutant template<> devant la définition

» nommant explicitement la classe/fonction spécifiée
C’estle <int> aprés af fiche dans I'exemple ci-dessus.

Programmation Orientée Objet — Cours 24 : SDA & Templates — 49/54

Spécialisation

©EPFL 2024-25
Jamila Sam

Modeles, surcharge et spécialisation

Les modeéles de fonctions peuvent trés bien étre surchargés
comme les fonctions usuelles (puisque, encore une fois, ce sont
juste une fagon condensée d’écrire plein de fonctions a la fois).

Par exemple :

template<typename Type>
void affiche (const Types& t) {
cout << "J’affiche " << t << endl;
}
// surcharge pour les pointeurs : on prefere ici
// ecrire le contenu plutot que 1’adresse.
template<typename Type> void affiche (Typex t) {
cout << "J’affiche " << %t << endl;

}

Note : on aurait méme pu faire mieux en écrivant :

template<typename Type> void affiche (Typex t) {
affiche<Type> (xt);
}

& Jean-Cédric Cl

c=PrL

Spécialisation

©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier

c=PrL

qui fait appel au premier modéle.

Programmation Orientée Objet — Cours 24 : SDA & Templates — 48/54

Exemple de spécialisation de classe

template<typename T1l, typename T2>
class Paire {

bi
// specialisation pour les paires <string,int>
template<> class Paire<string,int> {
public:
Paire (const string& un, int deux)
: premier (un), second(deux) {}
virtual ~Paire() {}
string getl () const { return premier; }
int get2() const { return second; }
void setl (const string& val) { premier = val; }
void set2 (int val) { second = val; }

// une methode de plus
void add(int i) { second += i; }

protected:
string premier;
int second;

}i

Programmation Orientée Objet — Cours 24 : SDA & Templates — 50/ 54

Modeles de classes et
compilation séparée

Spécialisation : remarques

Les modéle de classes doivent nécessairement étre définis au

Note1: La speplsllzatldqn peut;\glalzmert s'appliquer ur|1’|quern_en;[0?) moment de leur instanciation afin que le compilateur puisse
une méthode d'un modéle de classe sans que 'on soit obligé générer le code correspondant.
de spécialiser toute la classe. o o
Spécialisation Utilisée de la sorte, la spécialisation peut s’avérer Ce qui implique, lors de compilation séparee, que les fichiers
particulierement utile. Compilation d’en-téte (. h) doivent contenir non seulement la déclaration, mais
Jo . . , . s séparée Z TP < N ”
Note 2 : La spécialisation n’est pas une surcharge car il n’y a pas €galement la définition compléte de ces modéles!!
génération de plusieurs fonctions de méme nom (de plus que On ne peut donc pas séparer la déclaration de la définition dans
signifie une surcharge dans le cas d’'une classe ?) mais bien différents fichiers... Ce qui présente plusieurs inconvénients :
une instance specifique du modéle. > Les mémes instances de modéles peuvent étre compilées
Note 3 : il existe aussi des spécialisations partielles (de classe ou de plusieurs fois,
fonctions), mais cela nous emmenerait trop loin dans ce > et se retrouvent en de multiples exemplaires dans les fichiers
cours. exécutables.

» On ne peut plus cacher leurs définitions (par exemple pour
des raisons de confidentialité, protection contre la

©EPFL 2024-25 ©EPFL 2024-25

& Joan. Géic Chappolie s Gédic Chappolie concurrence, etc...)
=PFL o . =PFL jon Ori j
=iy Programmation Orientée Objet — Cours 24 : SDA & Templates — 51 /54 =iy Programmation Orientée Objet — Cours 24 : SDA & Templates — 52 /54
=y = = = 5 .
,, Templates Kw Ce que j’ai appris aujourd’hui

» Les bases de la formalisation des données : les structures

Déclarer un modele de classe ou de fonction : > :
de données abstraites

template<typename noml, typename nomZ2, ...>
» Les deux structures de données abstraites les plus utilisées
Définition externe des méthodes de modéles de classes : en informatique (en plus des tableaux et des types
template<typename noml, typename nom2, ...> élémentaires) : les listes chainées et les piles
NomClasse<noml, nom2, ...>::NomMethode(... » A pouvoir faire des modéles génériques de traitements ou de
classes, indépendamment du type, ce que I'on appelle de la
conelusion Instanciation : spécifier simplement les types voulus aprés le nom Gonelusion programmation générique.
de la classe/fonction, entre <> (Exemple : vector<double>) » Comment déclarer de tels modéles
» Comment en créer des instances
Spécialisation (totale) de modéle pour les types typel, type’...: > Comment spécialiser certains modéles
template<> NomModele<typel,type2,...> ...suite
de la declaration... La suite

Compilation séparée : pour les templates, il faut tout mettre Outils de la librairie standard

(déclarations et définitions) dans le fichier d’en-téte (. h).

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

EPFL EPFL
= Programmation Orientée Objet — Cours 24 : SDA & Templates — 53 /54 (=1 ad Programmation Orientée Objet — Cours 24 : SDA & Templates — 54 /54

	Synthèse
	Objectifs
	S.D.A.
	Listes
	Piles
	Programmation générique
	Déclaration de modèles
	Instanciation
	Spécialisation
	Compilation séparée
	Conclusion

