Synthése
Objectifs
S.DA
Listes
Piles

Programmation
générique

Déclaration de
modeles

Instanciation
Spécialisation

Compilation
séparée

Conclusion

(©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet :

Structures de Données Abstraites
&
Fonctions et Classes Génériques

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

Programmation Orientée Objet — Cours 24 : SDA & Templates — 1/54

Etat des lieux

Nous voici donc arrivés au terme des cours avec support MOOC.

Nous avons abordé jusqu’ici :
1. les bases de la programmation procédurale ;
2. les bases de la programmation orientée objets.

= Il nous reste a aborder quelques themes
d’approfondissement : structures de données et «templates»
ainsi qu’un survol de la librairie standard

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 2/54

v Qu’avons Nous vu en programmation ?

Objectifs

o programmer c’est décomposer une tache a automatiser en une
Listes 7 e . . ,
P‘t\ séquence d’instructions (traitements) et des données

Programmation operent sur

générique
Déciaratondo aitements)
Instanciation
Spécialisation influencent
Compilation
séparée . . , . A
— en programmation orientée objets, on regroupe dans le méme
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)
o OBJET
“{Psc“ attributs | méthodes
ABS
Interface
(partie visible)
Détails d’
o428 Implémentation
& Jean-Cédric Chappelier (partie interne/cachée)
=PFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 3/54

== Qu’avons nous vu en programmation ?

programmer c’est décomposer une tache a automatiser en une
séquence d'instructions (traitements) et des données

Algorithme S.D.A.
Traitements Données
Variables

Expressions & Opérateurs
Structures de contrble
Fonctions Portée

Chaines de caractéres
Tableaux statiques
Tableaux dynamiques
Structures

Pointeurs
Entrées/Sorties

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 3 /54

== Qu’avons nous vu en programmation ?

en programmation orientée objets, on regroupe dans le méme
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

Objet

Encapsulation et Abstraction
Classes

Héritage simple/multiple
Polymorphisme

Classes abstraites/virtuelles
Résolution des collisions de noms

Traitements Données
Méthodes Attributs
Constructeurs & Destructeurs Appels aux constructeurs
Const des attributs (hérités)
Virtuelles (pures) Statiques
Surcharge d’opérateurs(interne/externe)

Privés/protégés/publiques
Samiaam Hérités/cachés (: :)

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 3 /54

Objectifs du cours d’aujourd’hui

Objectifs

» Introduction aux structures de données abstraites :

» Listes chainées
> Piles

» Introduction a la programmation générique :
> Exemples

Déclaration de modéles

Instanciation

Spécialisation

Compilation séparée

vvyy

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 4 /54

Plan

» Structures de données abstraites

> Listes
> Piles
» Programmation générique
> Programmation générique : introduction, exemples
Déclaration des modéles
Instanciation
Spécialisation

>
>
>
»> Compilation séparée

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 5/54

Pourquoi modéliser les données ?

L'élaboration d’'un algorithme est grandement facilité par
I'utilisation de structures de données abstraites, de plus haut
niveau, et de fonctions de manipulations associées.

Une structure de données doit modéliser au mieux les
informations a traiter pour en faciliter le traitement par I'algorithme
considéré.

Choisir les bons modéles de données est aussi important que le
choix de bons algorithmes

Algorithme et structure de données abstraite sont intimement liés :

Programme = algorithme + données

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 6 /54

C’est quoi une « structure de données
abstraite » ?

La notion de structure de données abstraite (S.D.A.) est
indépendante de tout langage de programmation

Une S.D.A. est un ensemble organisé d’informations (ou données)
reliées logiquement et pouvant étre manipulées non seulement
individuellement mais aussi comme un tout.

Exemples généraux :
tableau (au sens général du terme)
contenu : divers éléments de types a préciser
interactions : demander la taille du tableau, accéder
(lecture/écriture) a chaque élément
individuellement, ...
vecteur (au sens général, pas C++) : formalisation
mathématique d’espace vectoriel sur un corps 7
contenu : n coordonnées (éléments de %)
interactions : les propriétés élémentaires définissant
S sam un espace vectoriel
& Jean-Cédric Chappelier

=pEL Exemple informatique élémentaire :

Programmation Orientée Objet — Cours 24 : SDA & Templates — 7 /54

Spécifications des
structures de données abstraites

Une S.D.A. est caractérisée par :
> son contenu
> les interactions possibles (manipulation, acces, ...)

Du point de vue informatique, une structure de données abstraite
peut étre spécifiée a deux niveaux :

» niveau fonctionnel / logique : spécification formelle des
données et des algorithmes de manipulation associés

> niveau physique (programmation) : comment est
implémentée la structure de données abstraite dans la
mémoire de la machine

= déterminant pour I'efficacité des programmes utilisant ces
données.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 8/54

Spécifications des S.D.A. [2]

Au niveau formel (modéle), on veut généraliser cette idée

« d'objets » manipulables par des opérateurs propres, sans
forcément en connaitre la structure interne et encore moins
limplémentation.

Par exemple, vous ne pensez pas un int comme une suite de
32 bits, mais bien comme un « entier » (dans un certain intervalle)
avec ses opérations propres : +, —, x, /

Une structure de données abstraite définit une abstraction des
données et cache les détails de leur implémentation.

abstraction : identifier précisément les caractéristiques de I'entité
(par rapport a ses applications), et en décrire les propriétés.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 9/54

Spécifications des S.D.A. [3]

Une structure de données abstraite modélise donc I'« ensemble
des services » désirés plutot que I'organisation intime des
données (détails d'implémentation)

On identifie usuellement 4 types de « services » :
1. les modificateurs, qui modifient la S.D.A.
2. les sélecteurs, qui permettent « d’interroger » la S.D.A.
3. les itérateurs, qui permettent de parcourir la structure
4. les constructeurs

Exemple :

tableau dynamique

modifieur : affectation d’'un élément (t [i]=a)

sélecteur : lecture d’'un élément (t [1])

sélecteur : le tableau est-il vide ? (t . size () == 0)
GEPFL 2024.25 itérateur : index d’un élément ([1] ci-dessus)

Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 10/54

Divers exemples de S.D.A.

Il'y a beaucoup de structures de données abstraites en
Informatique.

Dans ce cours, nous n’allons voir que les 2 plus fondamentales
(apres les tableaux) :

> les listes

> etles piles

Autres :

files d’attente (avec ou sans priorité)
» multi-listes

> arbres (pleins de sorte...)

>

>

v

graphes
tables de hachage

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 11/54

Plan

Listes

» Structures de données abstraites

> Listes
> Piles
» Programmation générique
> Programmation générique : introduction, exemples
» Déclaration des modéles
> Instanciation
> Spécialisation
»> Compilation séparée

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 12/54

Listes

Listes

Spécification logique :
Ensemble d’éléments successifs (pas d’acces direct), ordonnés
ou non

Interactions :

> accés au premier élément (sélecteur)

> accés a 'élément suivant d’'un élément (sélecteur)
» modifier 'élément courant (modificateur)
>

insérer/supprimer un élément aprés(/avant) I'élément courant
(modificateur)

tester si la liste est vide (sélecteur)
parcourir la liste (itérateur)

vy

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 13 /54

Listes

Listes

Exemple concret :

visionneuse stéreo (essayez d’accéder
a la 3e image directement, sans passer par
la 2e!)

Sk

Exemple informatique :

(a(b(c(d))

Une liste peut étre vu comme une structure récursive :

liste = élément + liste OU liste = vide

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 14 /54

Réalisations d’une liste

Listes

> réalisation statique :

tableau

> réalisation dynamique (liste chainée) :
vector (mais inconvénient 1 ci-apres)
ou

classe :
La bonne solution :
class Cellule;
typedef Cellulex PtrCell;

class ListeChaineeCellule {
type_el donnee;
ListeChaineex PtrCell suivant;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 15/54

Pourquoi les listes dynamiques ?

Listes

Les tableaux sont un type de données tres utile en programmation
mais présentent 2 limitations :

1. les données sont contigués (les unes derriéres les autres)
et donc linsertion d’'un nouvel élément au milieu du tableau
demande la recopie (le décalage) de tous les éléments
suivants.
= insertion en J(n)

2. pour les tableaux statiques, augmenter la taille (par exemple
si elle n’est pas connue a priori) nécessite la création d’'un
nouveau tableau
= 0(n)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 16 /54

Complexité optimale des opérations
élémentaires sur les listes

Listes

insérer un élément : (1) (temps constant)
supprimer un élément : /(1) (temps constant)

calculer la longueur : 0 (n) (temps fonction linéaire en n)
(voire ¢/(1) si le stockage de cette valeur est effectué,

en particulier si « longueur » a été spécifiée dans les « ser-
vices » de la SDA « liste »)

vider la liste : o(n)
parcourir la liste : o(n)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 17 /54

Exemples d’implémentation des opérations
élémentaires sur les listes

Listes
A des fins pédagogiques, voici une implémentation simple des
listes dynamiques de double sous forme de listes chainées :

class Cellule;
typedef Cellulex PtrCell;
const PtrCell LISTE_VIDE (0);
// Une cellule de la liste
class Cellule/{
public:
Cellule (double un_double)
:donnee (un_double), suite(LISTE_VIDE) {}
Cellule (double un_double, PtrCell suite)
:donnee (un_double), suite(suite) {}
PtrCell getSuite() {return suite;};
double getDonnee () {return donnee;};
void setSuite (PtrCell une_suite) {suite = une_suite;}
private:
double donnee; // la donnee
PtrCell suite; // le pointeur sur la cellule

// suivante
©EPFL 2024-25) .
Jamila Sam 4
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 18/54

Exemples d’implémentation des opérations
élémentaires sur les listes (2)

Listes

// Le type Liste chainee
class Liste{
public:
Liste () :queue (LISTE_VIDE) {}
bool est_vide();
void insere (double un_double);
void insere(Cellule& cell, double un_double);
unsigned int taille();
private:
PtrCell tete; //un pointeur sur le premier element
PtrCell queue; //un pointeur sur le dernier element

}i

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 19/54

Exemples d’insertion d’un élément

> en queue de liste

Listes

void Liste::insere (double un_double)
{
if (est_vide()) {
tete = new Cellule (un_double) ;
queue = tete;
}
else
insere ((xqueue), un_double);

> aprés un élément donné de la liste

void Liste::insere(Cellule& existante,
double un_double)

PtrCell suite(existante.getSuite());

PtrCell c(new Cellule (un_double, suite));

existante.setSuite(c);

if (c->getSuite() == LISTE_VIDE) queue = cC;
©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 20 /54

Insertion d’un élément dans une liste
chainée

Listes

C'H’ﬂ Pour les forward_list :
> l'insertion en téte de liste s’appelle push_front

> et l'insertion aprés un élément donné insert_after, mais
nécessite la notion d’itérateur que nous verrons un peu plus
loin.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 21 /54

Exemple de calcul de la longueur

Listes

unsigned int Liste::taille()
{
unsigned int taille(0);
PtrCell courant (tete);

while (courant != LISTE_VIDE)
{
++taille;
courant = courant->getSuite();

}

return taille;

Exercice : quelle solution serait plus efficace ?

ca—ti\l Note : Attention les forward_list, n‘ont pas de fonction
size()!
©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 22/54

Implémentations existantes des listes
chainées

Listes

c.\a%\l Les listes (simplement) chainées existent depuis C++11 :
#include <forward list>

forward_list<int> ma_liste({ 6, 1, 5, -23, 3 });
for (auto element : ma_liste) { cout << element << endl;
ma_liste.push_front (877);

Note : Les listes doublement chainées existent depuis C++98 :
#include <list>

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 23/54

Plan

Piles

» Structures de données abstraites

> Listes
> Piles
» Programmation générique
> Programmation générique : introduction, exemples
» Déclaration des modéles
> Instanciation
> Spécialisation
»> Compilation séparée

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 24 /54

Plan

Piles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 25/54

Piles

Spécification :

Une pile est une structure de données abstraite dynamique
contenant des éléments homogénes (de type non précisé) a 1
point d’acces et permettant

» d’ajouter une valeur a la pile (empiler ou push);

> de lire la derniére valeur ajoutée;

» d’enlever la derniére valeur ajoutée (dépiler ou pop);
> de tester si la pile est vide.

Piles

On ne « connait » donc de la pile que le dernier élément empilé
(son sommet).

Spécification physique :
liste chainée
ou
GEPFL 2024.25 tableau dynamique (vector)

Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 26 /54

Piles : exemples

Piles
Exemples concrets :
> une pile d’assiettes
> poupées russes
©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 27 /54

Piles : exemples (2)

Exemple d'utilisation (formelle) :

Piles .
empiler x X
empiler a a
P X
dépiler X
. b
empiler b
X
y
empiler y b
X
- b
dépiler
©EPFL 2024-25 X
Jamila Sam

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 28/54

Exemple d’utilisation des piles

Le probléeme des parenthéses : étant donnée une expression avec
des parenthéses, est-elle bien ou mal parenthésée ?

((a+b)xc—(d+4)x(5+(a+c)))*(c+(d+(e+5xg)«f)xa)
(correct)

Piles

(a+b)(
(incorrect)

Encore un peu plus complexe : différentes parenthéses
Exemple avec | et (

((DIO(OM)] e correct

(D] = incorrect

Autres exemples d'utilisation des piles (non traités ici) :
» tours de Hanoi

» notation postfixée (ou « polonaise inverse ») :
42+ 5%

©EPFL 2024-25
(= 5% (4+2))
EPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 29 /54

Vérification de parenthésage

Exemple
Tant que lire caractére ¢
Piles Sicest (ou [Entrée : ()]
empiler ¢
Sinon
Sicest) ou] empile (m
Si pile vide [
ECHEC empile [M
Sinon
¢ « lire la pile lu=),top =
Si ¢ et ¢ corres- — ne Correspond pas
pondent —> ERREUR
dépiler
Sinon
ECHEC
Si pile vide
OK
Sinon
ECHEC

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 30 /54

Deuxiéme Exemple

Entrée: ([() 1)

Piles empile ((

empile [E

(
empile ([

(
lu) — correspond — dépile E
lu] — correspond = dépile (
lu) — correspond = dépile ||

S sam pile vide = OK

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 31 /54

code C++

Piles bool check(string s) {
Pile p;
for (unsigned int i(0); i < s.size(); ++1i) {
if ((s[i] == 7" (") || (s[i] == "1["))
p.empile(s[i]);
else if (s[i] == ")") {
if ((!p.est_vide()) && (p.top() == "("))
p.depile();
else
return false;
} else if (s[i] == "1") {
if ((!p.est_vide()) && (p.top() == "["))
p.depile();
else
return false;
}
}

return p.est_vide();

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 32/54

code C++ (2)

Piles

Avec le standard stack :

Pile = stack<Type>, par exemple stack<char>
empile =push , par exemple p.push (s[i])
est_vide = empty , par exemple p.empty ()
depile =pop , par exemple p.pop ()

et top =top , par exemple p.top ()

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 33 /54

Plan

Programmation
générique

» Structures de données abstraites
> Listes
» Piles
» Programmation générique
> Programmation générique : introduction, exemples
» Déclaration des modéles
» Instanciation
> Spécialisation
»> Compilation séparée

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 34 /54

Programmation générique : introduction

Une cellule de notre liste chainée de tout a I'heure se présentait

comme suit :
Programmation // Une cellule de la liste
generiaue class Cellule {
public:
VI
private:
double donnee; // une donnee de type double
PtrCell suite;
bi

_z
A

//;i“\
e

= c’est exactement le méme code pour Liste et Cellule
sauf qu’il faut remplacer le type de la données pouvant étre
oEpFL 202025 stockée dans une Cellule

Jamila Sam
& Jean-Cédric Chappelier - DUplicatiOn de code!!

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 35/54

Si I'on veut une liste de int ?

Programmation générique

fegenmaton— Lidée de base est de passer les types de données comme
parametres pour décrire des traitements trés généraux
(« génériques »)
Il s’agit donc d’un niveau d’abstraction supplémentaire.

De tels modeéles de classes/fonctions s’appellent aussi
classes/fonctions génériques ou patrons (chablons), ou encore
« template ».

Vous en connaissez déja sans le savoir. Par exemple la « classe »
vector n'est en fait pas une classe mais un modele de classes :
c’est le méme modele que I'on stocke des char
(vector<char>), des int (vector<int>), ou tout autre objet.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 36 /54

Un exemple

Prenons un exemple simple pour commencer :
Programmation une fonction échangeant la valeur de 2 variables.
générique

Par exemple avec 2 entiers vous écririez une fonction comme :

// Echange la valeur de ses arguments
void echange (int¢& i, inté& J) {

int tmp(1);

i=3;

j = tmp;

Mais vous vous rendez bien compte que vous pourriez faire la
méme chose (le méme algorithme) avec deux double, ou méme
deux objets quelconques, pour peu qu’ils aient un constructeur de
copie (Obj tmp (i) ;) et un opérateur de copie (operator=).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 37 /54

Exemple, suite...

Lécriture générale serait alors quelque chose comme :

// Echange la valeur de ses arguments

P i . .
g$%$2“” void echange (Type& i, Type& J) {
Type tmp(i);
i=73;
j = tmp;

ou Type est une représentation générique du type des objets a
échanger.

La facon exacte de le faire en C++ est la suivante :

// Echange la valeur de ses arguments
template<typename Type>
void echange (Type& i, Type& 3)
Type tmp (i) ;
i=73;
J = tmp;

{

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 38/54

...et fin

On pourra alors utiliser la fonction echange avec tout type/classe
pogenneen— pour lequel le constructeur de copie et I'opérateur d'affectation (=)
sont définis.

Par exemple :

int a(2), b(4);
echange (a,b) ;

double da(2.3), db(4.5);
echange (da, db) ;

vector<double> va, vb;
echange (va, vb) ;

string sa("ca marche"), sb("coucou");
echange (sa, sb);

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 39 /54

Généralisation aux classes

Ce que l'on a fait ici avec une fonction, on peut le généraliser a
n’importe quelle classe.

Programmation

générique .
On pourrait
par exemple vouloir créer une classe qui réalise une paire d’objets :
template<typename T1l, typename T2>
class Paire {
public:
Paire (const T1l& un, const T2& deux)
: premier (un), second(deux) {}
virtual ~Paire () {}
Tl getl() const { return premier; }
T2 get2() const { return second; }
void setl (const Tl& val) { premier = val; }
void set2 (const T2& val) { second = val; }
protected:
Tl premier;
T2 second;
}i
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
EPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 40 /54

Généralisation aux classes (2)

Programmation et par exemple créer la classe « paire string—double » :
enerique
o Paire<string,double>

ou encore la classe « paire char—unsigned int » :
Paire<char,unsigned int>
Note : un tel modele de classe existe dans la librairie standard :
pair (définidans <utility>).

Les modéles de classes sont donc un moyen condensé d’écrire
plein de classes potentielles a la fois.

(de méme que les modeles de fonctions/méthodes sont un moyen
condensé d’écrire plein de fonctions/méthodes potentielles a la
fois)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 41 /54

Déclaration d’un modele

Pour déclarer un modéle de classe ou de fonction, il suffit de faire
précéder sa déclaration du mot clé template suivit de ses
arguments (qui sont donc des noms générigues de type) suivant
la syntaxe :

Déciaration de template<typename noml, typename nom2, ...>

modeles

Exemple :

template<typename T1l, typename T2>
class Paire {

Les types ainsi déclarés (parametres du modéle) peuvent alors
étre utilisés dans la définition qui suit, exactement comme tout

autre type.
Note : on peut aussi utiliser le mot c1ass a la place de typename,
par exemple :

template<class T1l, class T2>

©EPFL 2024-25 .
Jamila Sam class Paire {

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 42 /54

Déclaration de
modeles

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Déclaration d’'un modele (2)

Il est également possible de définir des types par défaut, avec la
méme contrainte que pour les paramétres de fonction : les valeurs
par défaut doivent étre placées en dernier.

Exemple :

template<typename Tl, typename T2 = unsigned int>
class Paire {

qui permettrait de déclarer la classe « paire char—unsigned int »

simplement par :
Paire<char>

Programmation Orientée Objet — Cours 24 : SDA & Templates — 43 /54

Définitions externes des méthodes de
modeles de classes

Déclaration de
modeles

Si les méthodes d’'un modéle de classes sont définies en dehors
de cette classe, elle devront alors aussi étre définies comme
modele et étre précédées du mot clé template, mais...

...il est de plus absolument nécessaire d’'ajouter les
parameétres du modele (les types génériques) au nom de la
classe

[pour bien spécifier que dans cette définition c’est la classe qui est en
modéle et non la méthode.]

= exemple sur le transparent suivant

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E Pi' L Programmation Orientée Objet — Cours 24 : SDA & Templates — 44 /54

Définitions externes des méthodes de
modeles de classes

- Exemple :
Déclaration de
modeles

template<typename T1l, typename T2> class Paire {
public:
Paire(const Tl&, const T2&);

}i

// definition du constructeur

template<typename T1l, typename T2>

// le constructeur du modele de classe Paire

// parametr’e par Tl et T2

Paire<T1l,T2>::Paire(const Tl& un, const T2& deux)
premier (un), second(deux) { }

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 24 : SDA & Templates — 45/54

Instanciation des modeles

La définition des modeles ne génére en elle-méme aucun code :
c’est juste une description de plein de codes potentiels.

Le code n’est produit que lorsque tous les parameétres du modéle
ont pris chacun un type spécifique.

Instanciation Lors de I'utilisation d’'un modéle, il faut donc fournir des valeurs
pour tous les paramétres (au moins ceux qui n’ont pas de valeur
par défaut). On appelle cette opération une instanciation du
modele.

Linstanciation peut étre implicite lorsque le contexte permet au
compilateur de décider de I'instance de modéle a choisir.

Par exemple, dans le code :
double da(2.3), db(4.5);
echange (da, db) ;
il est clair (par le contexte) qu’il s’agit de I'instance
S echange<double> du modéle template<typename T> void
Jamia Sem echange (T&, T&) ; qu'il faut utiliser.

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 46 /54

Instanciation des modeles (2)

Mais dans la plupart des cas, on explicite I'instanciation lors de
la déclaration d’'un objet.

C’est ce qui vous faites lorsque vous déclarez par exemple
vector<double> tableau;
instanciaton Il suffit dans ce cas de spécifier le(s) type(s) désiré(s) aprés le
nom du modéle de classe et entre <>.

Linstanciation explicite peut aussi étre utile dans les cas ou le
contexte n’est pas suffisamment clair pour choisir.

Par exemple avec le modéle de fonction

template <typename Type>
Type monmax (const Type& x, const Type& y) |
if (x < y) return y;

else return x;
}
?fm‘iiszfi“z lappel monmax (3.14, 7); estambigu. Il faudra alors écrire
& Jean-Cédric Chappelier
=PFL monmax<double> (3.14, 7);

Programmation Orientée Objet — Cours 24 : SDA & Templates — 47 /54

Modeles, surcharge et spécialisation

Les modéles de fonctions peuvent trés bien étre surchargés
comme les fonctions usuelles (puisque, encore une fois, ce sont
juste une fagon condensée d’écrire plein de fonctions a la fois).

Par exemple :
template<typename Type>
Spécialisation void affiche (const Type& t) {
cout << "J’affiche " << t << endl;

}

// surcharge pour les pointeurs : on prefere ici

// ecrire le contenu plutot que l’adresse.

template<typename Type> void affiche (Typex t) {
cout << "J’affiche " << %t << endl;

}

Note : on aurait méme pu faire mieux en écrivant :

template<typename Type> void affiche (Typex t) {
affiche<Type> (*t);
}

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cpPEL qui fait appel au premier modéle.

Programmation Orientée Objet — Cours 24 : SDA & Templates — 48/54

Modeles, surcharge et spécialisation (2)

Mais les modeéles (y compris les modeles de classes) offrent un
mécanisme supplémentaire : la spécialisation qui permet de
définir une version particuliere d’une classe ou d’une fonction pour
un choix spécifique des paramétres du modéle.

Par exemple, on pourrait spécialiser le second modele ci-dessus
Spécialisation dans le cas des pointeurs sur des entiers :

template<> wvoid affiche<int> (intx t) {
cout << "J’affiche le contenu d’un entier: ";
<< *t << endl;

La spécialisation d’'un modele (lorsqu’elle est totale) se fait en :
> ajoutant template<> devant la définition

» nommant explicitement la classe/fonction spécifiée
v C'estle <int> aprés affiche dans I'exemple ci-dessus.

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 49 /54

Exemple de spécialisation de classe

template<typename T1l, typename T2>
class Paire {

bi
// specialisation pour les paires <string,int>
template<> class Paire<string,int> {

public:
Spécialisation Paire (const strings& un, int deux)
premier (un), second(deux) {}
virtual ~Paire() {}
string getl () const { return premier; }
int get2() const { return second; }
void setl (const string& val) { premier = val; }
void set2 (int val) { second = wval; }

// une methode de plus
void add(int i) { second += 1i; }

protected:
string premier;
int second;
©EPFL 2024-25 }s

Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 24 : SDA & Templates — 50 /54

Spécialisation : remarques

Note 1 : La spécialisation peut également s’appliquer uniqguement a
une méthode d’'un modeéle de classe sans que I'on soit obligé
de spécialiser toute la classe.

Spécialisation Utilisée de la sorte, la spécialisation peut s’avérer
particulierement utile.

Note 2 : La spécialisation n’est pas une surcharge car il n’y a pas
génération de plusieurs fonctions de méme nom (de plus que
signifie une surcharge dans le cas d’une classe ?) mais bien
une instance spécifique du modéle.

Note 3 : il existe aussi des spécialisations partielles (de classe ou de
fonctions), mais cela nous emmeénerait trop loin dans ce
cours.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 51/54

Compilation
séparée

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Modeles de classes et
compilation séparée

Les modéle de classes doivent nécessairement étre définis au
moment de leur instanciation afin que le compilateur puisse
générer le code correspondant.

Ce qui implique, lors de compilation séparée, que les fichiers
d’en-téte (.h) doivent contenir non seulement la déclaration, mais
également la définition compléete de ces modéles!!

On ne peut donc pas séparer la déclaration de la définition dans
différents fichiers... Ce qui présente plusieurs inconvénients :

> Les mémes instances de modeles peuvent étre compilées
plusieurs fois,

> et se retrouvent en de multiples exemplaires dans les fichiers
exécutables.

» On ne peut plus cacher leurs définitions (par exemple pour
des raisons de confidentialité, protection contre la
concurrence, etc...)

Programmation Orientée Objet — Cours 24 : SDA & Templates — 52 /54

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

ZM Templates \/*

Déclarer un modéle de classe ou de fonction :
template<typename noml, typename nom2, ...>

Définition externe des méthodes de modéles de classes :
template<typename noml, typename nom2, ...>
NomClasse<noml, nom2, ...>::NomMethode(...

Instanciation : spécifier simplement les types voulus aprés le nom
de la classe/fonction, entre <> (Exemple : vector<double>)

Spécialisation (totale) de modéle pour les types typel, type2...:
template<> NomModele<typel, type2,...> ...suite

de la declaration...

Compilation séparée : pour les templates, il faut tout mettre
(déclarations et définitions) dans le fichier d’en-téte (. h).

Programmation Orientée Objet — Cours 24 : SDA & Templates — 53 /54

Ce que j’ai appris aujourd’hui

> Les bases de la formalisation des données : les structures
de données abstraites

> Les deux structures de données abstraites les plus utilisées
en informatique (en plus des tableaux et des types
élémentaires) : les listes chainées et les piles
> A pouvoir faire des modéles génériques de traitements ou de
classes, indépendamment du type, ce que I'on appelle de la
Gonelusion programmation générique.
» Comment déclarer de tels modeles
» Comment en créer des instances
» Comment spécialiser certains modéles

La suite
» Outils de la librairie standard

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 24 : SDA & Templates — 54 /54

	Synthèse
	Objectifs
	S.D.A.
	Listes
	Piles
	Programmation générique
	Déclaration de modèles
	Instanciation
	Spécialisation
	Compilation séparée
	Conclusion

