
Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation Orientée Objet :

Structures de Données Abstraites
&

Fonctions et Classes Génériques

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

Programmation Orientée Objet – Cours 24 : SDA & Templates – 1 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

État des lieux

Nous voici donc arrivés au terme des cours avec support MOOC.

Nous avons abordé jusqu’ici :
1. les bases de la programmation procédurale ;
2. les bases de la programmation orientée objets.

☞ Il nous reste à aborder quelques thèmes
d’approfondissement : structures de données et «templates»
ainsi qu’un survol de la librairie standard

Programmation Orientée Objet – Cours 24 : SDA & Templates – 2 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Qu’avons nous vu en programmation?
programmer c’est décomposer une tâche à automatiser en une
séquence d’instructions (traitements) et des données

traitements données

influencent

opèrent sur

en programmation orientée objets, on regroupe dans le même
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

Détails d’
Implémentation

(partie interne/cachée)

Interface
(partie visible)

OBJET
attributs méthodes

(vide)

AB
STR

AC
TIO

N

Programmation Orientée Objet – Cours 24 : SDA & Templates – 3 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Qu’avons nous vu en programmation?

programmer c’est décomposer une tâche à automatiser en une
séquence d’instructions (traitements) et des données

Algorithme S.D.A.
Traitements Données

Variables
Expressions & Opérateurs
Structures de contrôle
Fonctions Portée

Chaînes de caractères
Tableaux statiques
Tableaux dynamiques
Structures
Pointeurs

Entrées/Sorties

Programmation Orientée Objet – Cours 24 : SDA & Templates – 3 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Qu’avons nous vu en programmation?

en programmation orientée objets, on regroupe dans le même
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

Objet
Encapsulation et Abstraction
Classes
Héritage simple/multiple
Polymorphisme
Classes abstraites/virtuelles
Résolution des collisions de noms

Traitements Données
Méthodes Attributs
Constructeurs & Destructeurs Appels aux constructeurs
Const des attributs (hérités)
Virtuelles (pures) Statiques
Surcharge d’opérateurs(interne/externe)

Privés/protégés/publiques
Hérités/cachés (: :)

Programmation Orientée Objet – Cours 24 : SDA & Templates – 3 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Objectifs du cours d’aujourd’hui

▶ Introduction aux structures de données abstraites :
▶ Listes chaînées
▶ Piles

▶ Introduction à la programmation générique :
▶ Exemples
▶ Déclaration de modèles
▶ Instanciation
▶ Spécialisation
▶ Compilation séparée

Programmation Orientée Objet – Cours 24 : SDA & Templates – 4 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Plan

▶ Structures de données abstraites
▶ Listes
▶ Piles

▶ Programmation générique
▶ Programmation générique : introduction, exemples
▶ Déclaration des modèles
▶ Instanciation
▶ Spécialisation
▶ Compilation séparée

Programmation Orientée Objet – Cours 24 : SDA & Templates – 5 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pourquoi modéliser les données?

L’élaboration d’un algorithme est grandement facilité par
l’utilisation de structures de données abstraites, de plus haut
niveau, et de fonctions de manipulations associées.

Une structure de données doit modéliser au mieux les
informations à traiter pour en faciliter le traitement par l’algorithme
considéré.

Choisir les bons modèles de données est aussi important que le
choix de bons algorithmes

Algorithme et structure de données abstraite sont intimement liés :

Programme = algorithme + données

Programmation Orientée Objet – Cours 24 : SDA & Templates – 6 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

C’est quoi une « structure de données
abstraite »?

La notion de structure de données abstraite (S.D.A.) est
indépendante de tout langage de programmation
Une S.D.A. est un ensemble organisé d’informations (ou données)
reliées logiquement et pouvant être manipulées non seulement
individuellement mais aussi comme un tout.

Exemples généraux :
tableau (au sens général du terme)

contenu : divers éléments de types à préciser
interactions : demander la taille du tableau, accéder
(lecture/écriture) à chaque élément
individuellement, ...

vecteur (au sens général, pas C++) : formalisation
mathématique d’espace vectoriel sur un corps K
contenu : n coordonnées (éléments de K)
interactions : les propriétés élémentaires définissant
un espace vectoriel

Exemple informatique élémentaire :

Vous connaissez déjà des structures de données abstraites, très
simples : les types élémentaires.

Par exemple, un int
interactions : affectation, lecture de la valeur, +, -, *, /

Programmation Orientée Objet – Cours 24 : SDA & Templates – 7 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Spécifications des
structures de données abstraites

Une S.D.A. est caractérisée par :
▶ son contenu
▶ les interactions possibles (manipulation, accès, ...)

Du point de vue informatique, une structure de données abstraite
peut être spécifiée à deux niveaux :
▶ niveau fonctionnel / logique : spécification formelle des

données et des algorithmes de manipulation associés
▶ niveau physique (programmation) : comment est

implémentée la structure de données abstraite dans la
mémoire de la machine

☞ déterminant pour l’efficacité des programmes utilisant ces
données.

Programmation Orientée Objet – Cours 24 : SDA & Templates – 8 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Spécifications des S.D.A. [2]

Au niveau formel (modèle), on veut généraliser cette idée
« d’objets » manipulables par des opérateurs propres, sans
forcément en connaître la structure interne et encore moins
l’implémentation.

Par exemple, vous ne pensez pas un int comme une suite de
32 bits, mais bien comme un « entier » (dans un certain intervalle)
avec ses opérations propres : +, -, *, /

Une structure de données abstraite définit une abstraction des
données et cache les détails de leur implémentation.

abstraction : identifier précisément les caractéristiques de l’entité
(par rapport à ses applications), et en décrire les propriétés.

Programmation Orientée Objet – Cours 24 : SDA & Templates – 9 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Spécifications des S.D.A. [3]

Une structure de données abstraite modélise donc l’« ensemble
des services » désirés plutôt que l’organisation intime des
données (détails d’implémentation)

On identifie usuellement 4 types de « services » :
1. les modificateurs, qui modifient la S.D.A.
2. les sélecteurs, qui permettent « d’interroger » la S.D.A.
3. les itérateurs, qui permettent de parcourir la structure
4. les constructeurs

Exemple :
tableau dynamique
modifieur : affectation d’un élément (t[i]=a)
sélecteur : lecture d’un élément (t[i])
sélecteur : le tableau est-il vide? (t.size() == 0)
itérateur : index d’un élément ([i] ci-dessus)

Programmation Orientée Objet – Cours 24 : SDA & Templates – 10 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Divers exemples de S.D.A.

Il y a beaucoup de structures de données abstraites en
Informatique.

Dans ce cours, nous n’allons voir que les 2 plus fondamentales
(après les tableaux) :
▶ les listes
▶ et les piles

Autres :
▶ files d’attente (avec ou sans priorité)
▶ multi-listes
▶ arbres (pleins de sorte...)
▶ graphes
▶ tables de hachage

Programmation Orientée Objet – Cours 24 : SDA & Templates – 11 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Plan

▶ Structures de données abstraites
▶ Listes
▶ Piles

▶ Programmation générique
▶ Programmation générique : introduction, exemples
▶ Déclaration des modèles
▶ Instanciation
▶ Spécialisation
▶ Compilation séparée

Programmation Orientée Objet – Cours 24 : SDA & Templates – 12 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Listes

Spécification logique :
Ensemble d’éléments successifs (pas d’accès direct), ordonnés
ou non

Interactions :
▶ accès au premier élément (sélecteur)
▶ accès à l’élément suivant d’un élément (sélecteur)
▶ modifier l’élément courant (modificateur)
▶ insérer/supprimer un élément après(/avant) l’élément courant

(modificateur)
▶ tester si la liste est vide (sélecteur)
▶ parcourir la liste (itérateur)

Programmation Orientée Objet – Cours 24 : SDA & Templates – 13 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Listes

Exemple concret :

visionneuse stéreo (essayez d’accéder
à la 3e image directement, sans passer par
la 2e !)

Exemple informatique :
(a (b (c (d))))

Une liste peut être vu comme une structure récursive :

liste = élément + liste OU liste = vide

Programmation Orientée Objet – Cours 24 : SDA & Templates – 14 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Réalisations d’une liste

▶ réalisation statique :

tableau

▶ réalisation dynamique (liste chaînée) :

vector (mais inconvénient 1 ci-après)

ou

classe :
La bonne solution :
class Cellule;
typedef Cellule* PtrCell;

class ListeChaineeCellule {
type_el donnee;
ListeChainee* PtrCell suivant;

}

Programmation Orientée Objet – Cours 24 : SDA & Templates – 15 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pourquoi les listes dynamiques?

Les tableaux sont un type de données très utile en programmation
mais présentent 2 limitations :

1. les données sont contiguës (les unes derrières les autres)
et donc l’insertion d’un nouvel élément au milieu du tableau
demande la recopie (le décalage) de tous les éléments
suivants.
=⇒ insertion en O(n)

2. pour les tableaux statiques, augmenter la taille (par exemple
si elle n’est pas connue a priori) nécessite la création d’un
nouveau tableau
=⇒ O(n)

Programmation Orientée Objet – Cours 24 : SDA & Templates – 16 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Complexité optimale des opérations
élémentaires sur les listes

insérer un élément : O(1) (temps constant)

supprimer un élément : O(1) (temps constant)

calculer la longueur : O(n) (temps fonction linéaire en n)
(voire O(1) si le stockage de cette valeur est effectué,
en particulier si « longueur » a été spécifiée dans les « ser-
vices » de la SDA « liste »)

vider la liste : O(n)

parcourir la liste : O(n)

Programmation Orientée Objet – Cours 24 : SDA & Templates – 17 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemples d’implémentation des opérations
élémentaires sur les listes

À des fins pédagogiques, voici une implémentation simple des
listes dynamiques de double sous forme de listes chaînées :

class Cellule;
typedef Cellule* PtrCell;
const PtrCell LISTE_VIDE(0);
// Une cellule de la liste
class Cellule{
public:

Cellule(double un_double)
:donnee(un_double), suite(LISTE_VIDE){}

Cellule(double un_double, PtrCell suite)
:donnee(un_double), suite(suite){}

PtrCell getSuite(){return suite;};
double getDonnee(){return donnee;};
void setSuite(PtrCell une_suite){suite = une_suite;}

private:
double donnee; // la donnee
PtrCell suite; // le pointeur sur la cellule

// suivante
};

Programmation Orientée Objet – Cours 24 : SDA & Templates – 18 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemples d’implémentation des opérations
élémentaires sur les listes (2)

// Le type Liste chainee
class Liste{
public:

Liste():queue(LISTE_VIDE){}
bool est_vide();
void insere(double un_double);
void insere(Cellule& cell, double un_double);
unsigned int taille();

private:
PtrCell tete; //un pointeur sur le premier element
PtrCell queue; //un pointeur sur le dernier element

};

Programmation Orientée Objet – Cours 24 : SDA & Templates – 19 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemples d’insertion d’un élément
▶ en queue de liste

void Liste::insere(double un_double)
{

if (est_vide()) {
tete = new Cellule(un_double) ;
queue = tete;

}
else

insere((*queue), un_double);
}

▶ après un élément donné de la liste

void Liste::insere(Cellule& existante,
double un_double)

{
PtrCell suite(existante.getSuite());
PtrCell c(new Cellule(un_double,suite));
existante.setSuite(c);
if (c->getSuite() == LISTE_VIDE) queue = c;
}

Programmation Orientée Objet – Cours 24 : SDA & Templates – 20 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Insertion d’un élément dans une liste
chaînée

Pour les forward_list :

▶ l’insertion en tête de liste s’appelle push_front

▶ et l’insertion après un élément donné insert_after, mais
nécessite la notion d’itérateur que nous verrons un peu plus
loin.

Programmation Orientée Objet – Cours 24 : SDA & Templates – 21 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple de calcul de la longueur

unsigned int Liste::taille()
{

unsigned int taille(0);
PtrCell courant(tete);
while(courant != LISTE_VIDE)

{
++taille;
courant = courant->getSuite();

}
return taille;

}

Exercice : quelle solution serait plus efficace?

Note : Attention les forward_list, n’ont pas de fonction
size() !

Programmation Orientée Objet – Cours 24 : SDA & Templates – 22 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Implémentations existantes des listes
chaînées

Les listes (simplement) chainées existent depuis C++11 :
#include <forward_list>

forward_list<int> ma_liste({ 6, 1, 5, -23, 3 });

for (auto element : ma_liste) { cout << element << endl; }

ma_liste.push_front(877);

Note : Les listes doublement chainées existent depuis C++98 :
#include <list>

Programmation Orientée Objet – Cours 24 : SDA & Templates – 23 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Plan

▶ Structures de données abstraites
▶ Listes
▶ Piles

▶ Programmation générique
▶ Programmation générique : introduction, exemples
▶ Déclaration des modèles
▶ Instanciation
▶ Spécialisation
▶ Compilation séparée

Programmation Orientée Objet – Cours 24 : SDA & Templates – 24 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Plan

Programmation Orientée Objet – Cours 24 : SDA & Templates – 25 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Piles

Spécification :
Une pile est une structure de données abstraite dynamique
contenant des éléments homogènes (de type non précisé) à 1
point d’accès et permettant
▶ d’ajouter une valeur à la pile (empiler ou push) ;
▶ de lire la dernière valeur ajoutée ;
▶ d’enlever la dernière valeur ajoutée (dépiler ou pop) ;
▶ de tester si la pile est vide.

On ne « connait » donc de la pile que le dernier élément empilé
(son sommet).

Spécification physique :
liste chaînée

ou
tableau dynamique (vector)

Programmation Orientée Objet – Cours 24 : SDA & Templates – 26 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Piles : exemples

Exemples concrets :
▶ une pile d’assiettes

▶ poupées russes

Programmation Orientée Objet – Cours 24 : SDA & Templates – 27 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Piles : exemples (2)

Exemple d’utilisation (formelle) :

empiler x x

empiler a
a
x

dépiler x

empiler b
b
x

empiler y
y
b
x

dépiler
b
x

Programmation Orientée Objet – Cours 24 : SDA & Templates – 28 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple d’utilisation des piles
Le problème des parenthèses : étant donnée une expression avec
des parenthèses, est-elle bien ou mal parenthésée?
((a+b)∗c− (d +4)∗ (5+(a+c)))∗ (c+(d +(e+5∗g)∗ f)∗a)

(correct)
(a+b)(

(incorrect)

Encore un peu plus complexe : différentes parenthèses
Exemple avec [et (

([])[()(()[])] ☞ correct
([)] ☞ incorrect

Autres exemples d’utilisation des piles (non traités ici) :
▶ tours de Hanoi
▶ notation postfixée (ou « polonaise inverse ») :

4 2 + 5 ∗
(☞ 5∗ (4+2))

Programmation Orientée Objet – Cours 24 : SDA & Templates – 29 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Vérification de parenthésage

Tant que lire caractère c
Si c est (ou [

empiler c
Sinon

Si c est) ou]
Si pile vide

ÉCHEC
Sinon

c′← lire la pile
Si c et c′ corres-
pondent

dépiler
Sinon

ÉCHEC
Si pile vide

OK
Sinon

ÉCHEC

Exemple

Entrée : ([)]

empile ((

empile [
[
(

lu =), top = [
→ ne correspond pas
=⇒ ERREUR

Programmation Orientée Objet – Cours 24 : SDA & Templates – 30 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Deuxième Exemple

Entrée : ([()])
empile ((

empile [
[
(

empile (
(
[
(

lu)→ correspond =⇒ dépile
[
(

lu]→ correspond =⇒ dépile (

lu)→ correspond =⇒ dépile

pile vide =⇒ OK

Programmation Orientée Objet – Cours 24 : SDA & Templates – 31 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

code C++

bool check(string s) {
Pile p;
for (unsigned int i(0); i < s.size(); ++i) {
if ((s[i] == ’(’) || (s[i] == ’[’))
p.empile(s[i]);

else if (s[i] == ’)’) {
if ((!p.est_vide()) && (p.top() == ’(’))

p.depile();
else

return false;
} else if (s[i] == ’]’) {
if ((!p.est_vide()) && (p.top() == ’[’))

p.depile();
else

return false;
}

}
return p.est_vide();

}

Programmation Orientée Objet – Cours 24 : SDA & Templates – 32 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

code C++ (2)

Avec le standard stack :

Pile = stack<Type>, par exemple stack<char>
empile = push , par exemple p.push(s[i])
est_vide = empty , par exemple p.empty()
depile = pop , par exemple p.pop()
et top = top , par exemple p.top()

Programmation Orientée Objet – Cours 24 : SDA & Templates – 33 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Plan

▶ Structures de données abstraites
▶ Listes
▶ Piles

▶ Programmation générique
▶ Programmation générique : introduction, exemples
▶ Déclaration des modèles
▶ Instanciation
▶ Spécialisation
▶ Compilation séparée

Programmation Orientée Objet – Cours 24 : SDA & Templates – 34 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation générique : introduction
Une cellule de notre liste chaînée de tout à l’heure se présentait
comme suit :

// Une cellule de la liste
class Cellule {
public:
//....

private:
double donnee; // une donnee de type double
PtrCell suite;

};

Si l’on veut une liste de int?

☞ c’est exactement le même code pour Liste et Cellule
sauf qu’il faut remplacer le type de la données pouvant être
stockée dans une Cellule

☞ Duplication de code ! !
Programmation Orientée Objet – Cours 24 : SDA & Templates – 35 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation générique

L’idée de base est de passer les types de données comme
paramètres pour décrire des traitements très généraux
(« génériques »)
Il s’agit donc d’un niveau d’abstraction supplémentaire.

De tels modèles de classes/fonctions s’appellent aussi
classes/fonctions génériques ou patrons (chablons), ou encore
« template ».

Vous en connaissez déjà sans le savoir. Par exemple la « classe »
vector n’est en fait pas une classe mais un modèle de classes :
c’est le même modèle que l’on stocke des char
(vector<char>), des int (vector<int>), ou tout autre objet.

Programmation Orientée Objet – Cours 24 : SDA & Templates – 36 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Un exemple

Prenons un exemple simple pour commencer :
une fonction échangeant la valeur de 2 variables.

Par exemple avec 2 entiers vous écririez une fonction comme :

// Echange la valeur de ses arguments
void echange(int& i, int& j) {

int tmp(i);
i = j;
j = tmp;

}

Mais vous vous rendez bien compte que vous pourriez faire la
même chose (le même algorithme) avec deux double, ou même
deux objets quelconques, pour peu qu’ils aient un constructeur de
copie (Obj tmp(i);) et un opérateur de copie (operator=).

Programmation Orientée Objet – Cours 24 : SDA & Templates – 37 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple, suite...

L’écriture générale serait alors quelque chose comme :

// Echange la valeur de ses arguments
void echange(Type& i, Type& j) {

Type tmp(i);
i = j;
j = tmp;

}

où Type est une représentation générique du type des objets à
échanger.

La façon exacte de le faire en C++ est la suivante :

// Echange la valeur de ses arguments
template<typename Type>
void echange(Type& i, Type& j) {

Type tmp(i);
i = j;
j = tmp;

}

Programmation Orientée Objet – Cours 24 : SDA & Templates – 38 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

...et fin

On pourra alors utiliser la fonction echange avec tout type/classe
pour lequel le constructeur de copie et l’opérateur d’affectation (=)
sont définis.

Par exemple :

int a(2), b(4);
echange(a,b);

double da(2.3), db(4.5);
echange(da,db);

vector<double> va, vb;
echange(va,vb);

string sa("ca marche"), sb("coucou");
echange(sa, sb);

Programmation Orientée Objet – Cours 24 : SDA & Templates – 39 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Généralisation aux classes

Ce que l’on a fait ici avec une fonction, on peut le généraliser à
n’importe quelle classe.

On pourrait
par exemple vouloir créer une classe qui réalise une paire d’objets :

template<typename T1, typename T2>
class Paire {
public:

Paire(const T1& un, const T2& deux)
: premier(un), second(deux) {}

virtual ~Paire(){}
T1 get1() const { return premier; }
T2 get2() const { return second; }
void set1(const T1& val) { premier = val; }
void set2(const T2& val) { second = val; }

protected:
T1 premier;
T2 second;

};

Programmation Orientée Objet – Cours 24 : SDA & Templates – 40 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Généralisation aux classes (2)

et par exemple créer la classe « paire string–double » :
Paire<string,double>

ou encore la classe « paire char–unsigned int » :
Paire<char,unsigned int>

Note : un tel modèle de classe existe dans la librairie standard :
pair (défini dans <utility>).

Les modèles de classes sont donc un moyen condensé d’écrire
plein de classes potentielles à la fois.

(de même que les modèles de fonctions/méthodes sont un moyen
condensé d’écrire plein de fonctions/méthodes potentielles à la
fois)

Programmation Orientée Objet – Cours 24 : SDA & Templates – 41 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Déclaration d’un modèle
Pour déclarer un modèle de classe ou de fonction, il suffit de faire
précéder sa déclaration du mot clé template suivit de ses
arguments (qui sont donc des noms génériques de type) suivant
la syntaxe :

template<typename nom1, typename nom2, ...>

Exemple :
template<typename T1, typename T2>
class Paire {
...

Les types ainsi déclarés (paramètres du modèle) peuvent alors
être utilisés dans la définition qui suit, exactement comme tout
autre type.

Note : on peut aussi utiliser le mot class à la place de typename,
par exemple :

template<class T1, class T2>
class Paire {
...

Programmation Orientée Objet – Cours 24 : SDA & Templates – 42 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Déclaration d’un modèle (2)

Il est également possible de définir des types par défaut, avec la
même contrainte que pour les paramètres de fonction : les valeurs
par défaut doivent être placées en dernier.

Exemple :

template<typename T1, typename T2 = unsigned int>
class Paire {
...

qui permettrait de déclarer la classe « paire char–unsigned int »
simplement par :

Paire<char>

Programmation Orientée Objet – Cours 24 : SDA & Templates – 43 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Définitions externes des méthodes de
modèles de classes

Si les méthodes d’un modèle de classes sont définies en dehors
de cette classe, elle devront alors aussi être définies comme
modèle et être précédées du mot clé template, mais...

...il est de plus absolument nécessaire d’ajouter les
paramètres du modèle (les types génériques) au nom de la
classe
[pour bien spécifier que dans cette définition c’est la classe qui est en
modèle et non la méthode.]

☞ exemple sur le transparent suivant

Programmation Orientée Objet – Cours 24 : SDA & Templates – 44 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Définitions externes des méthodes de
modèles de classes

Exemple :

template<typename T1, typename T2> class Paire {
public:
Paire(const T1&, const T2&);

...
};

// definition du constructeur
template<typename T1, typename T2>
// le constructeur du modele de classe Paire
// parametr’e par T1 et T2
Paire<T1,T2>::Paire(const T1& un, const T2& deux)
: premier(un), second(deux) { }

Programmation Orientée Objet – Cours 24 : SDA & Templates – 45 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Instanciation des modèles

La définition des modèles ne génère en elle-même aucun code :
c’est juste une description de plein de codes potentiels.

Le code n’est produit que lorsque tous les paramètres du modèle
ont pris chacun un type spécifique.

Lors de l’utilisation d’un modèle, il faut donc fournir des valeurs
pour tous les paramètres (au moins ceux qui n’ont pas de valeur
par défaut). On appelle cette opération une instanciation du
modèle.

L’instanciation peut être implicite lorsque le contexte permet au
compilateur de décider de l’instance de modèle à choisir.

Par exemple, dans le code :
double da(2.3), db(4.5);
echange(da,db);

il est clair (par le contexte) qu’il s’agit de l’instance
echange<double> du modèle template<typename T> void
echange(T&,T&); qu’il faut utiliser.

Programmation Orientée Objet – Cours 24 : SDA & Templates – 46 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Instanciation des modèles (2)
Mais dans la plupart des cas, on explicite l’instanciation lors de
la déclaration d’un objet.

C’est ce qui vous faites lorsque vous déclarez par exemple
vector<double> tableau;

Il suffit dans ce cas de spécifier le(s) type(s) désiré(s) après le
nom du modèle de classe et entre <>.

L’instanciation explicite peut aussi être utile dans les cas où le
contexte n’est pas suffisamment clair pour choisir.

Par exemple avec le modèle de fonction

template <typename Type>
Type monmax(const Type& x, const Type& y) {

if (x < y) return y;
else return x;

}

l’appel monmax(3.14, 7); est ambigu. Il faudra alors écrire
monmax<double>(3.14, 7);

Programmation Orientée Objet – Cours 24 : SDA & Templates – 47 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Modèles, surcharge et spécialisation
Les modèles de fonctions peuvent très bien être surchargés
comme les fonctions usuelles (puisque, encore une fois, ce sont
juste une façon condensée d’écrire plein de fonctions à la fois).

Par exemple :

template<typename Type>
void affiche(const Type& t) {

cout << "J’affiche " << t << endl;
}
// surcharge pour les pointeurs : on prefere ici
// ecrire le contenu plutot que l’adresse.
template<typename Type> void affiche(Type* t) {

cout << "J’affiche " << *t << endl;
}

Note : on aurait même pu faire mieux en écrivant :

template<typename Type> void affiche(Type* t) {
affiche<Type>(*t);

}

qui fait appel au premier modèle.
Programmation Orientée Objet – Cours 24 : SDA & Templates – 48 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Modèles, surcharge et spécialisation (2)

Mais les modèles (y compris les modèles de classes) offrent un
mécanisme supplémentaire : la spécialisation qui permet de
définir une version particulière d’une classe ou d’une fonction pour
un choix spécifique des paramètres du modèle.

Par exemple, on pourrait spécialiser le second modèle ci-dessus
dans le cas des pointeurs sur des entiers :

template<> void affiche<int>(int* t) {
cout << "J’affiche le contenu d’un entier: ";

<< *t << endl;
}

La spécialisation d’un modèle (lorsqu’elle est totale) se fait en :
▶ ajoutant template<> devant la définition
▶ nommant explicitement la classe/fonction spécifiée

C’est le <int> après affiche dans l’exemple ci-dessus.

Programmation Orientée Objet – Cours 24 : SDA & Templates – 49 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple de spécialisation de classe

template<typename T1, typename T2>
class Paire {
...
};
// specialisation pour les paires <string,int>
template<> class Paire<string,int> {
public:
Paire(const string& un, int deux)

: premier(un), second(deux) {}
virtual ~Paire() {}
string get1() const { return premier; }
int get2() const { return second; }
void set1(const string& val) { premier = val; }
void set2(int val) { second = val; }

// une methode de plus
void add(int i) { second += i; }

protected:
string premier;
int second;

};

Programmation Orientée Objet – Cours 24 : SDA & Templates – 50 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Spécialisation : remarques

Note 1 : La spécialisation peut également s’appliquer uniquement à
une méthode d’un modèle de classe sans que l’on soit obligé
de spécialiser toute la classe.
Utilisée de la sorte, la spécialisation peut s’avérer
particulièrement utile.

Note 2 : La spécialisation n’est pas une surcharge car il n’y a pas
génération de plusieurs fonctions de même nom (de plus que
signifie une surcharge dans le cas d’une classe?) mais bien
une instance spécifique du modèle.

Note 3 : il existe aussi des spécialisations partielles (de classe ou de
fonctions), mais cela nous emmènerait trop loin dans ce
cours.

Programmation Orientée Objet – Cours 24 : SDA & Templates – 51 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Modèles de classes et
compilation séparée

Les modèle de classes doivent nécessairement être définis au
moment de leur instanciation afin que le compilateur puisse
générer le code correspondant.

Ce qui implique, lors de compilation séparée, que les fichiers
d’en-tête (.h) doivent contenir non seulement la déclaration, mais
également la définition complète de ces modèles ! !

On ne peut donc pas séparer la déclaration de la définition dans
différents fichiers... Ce qui présente plusieurs inconvénients :
▶ Les mêmes instances de modèles peuvent être compilées

plusieurs fois,
▶ et se retrouvent en de multiples exemplaires dans les fichiers

exécutables.
▶ On ne peut plus cacher leurs définitions (par exemple pour

des raisons de confidentialité, protection contre la
concurrence, etc...)

Programmation Orientée Objet – Cours 24 : SDA & Templates – 52 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Templates

Déclarer un modèle de classe ou de fonction :
template<typename nom1, typename nom2, ...>

Définition externe des méthodes de modèles de classes :
template<typename nom1, typename nom2, ...>
NomClasse<nom1, nom2, ...>::NomMethode(...

Instanciation : spécifier simplement les types voulus après le nom
de la classe/fonction, entre <> (Exemple : vector<double>)

Spécialisation (totale) de modèle pour les types type1, type2... :
template<> NomModele<type1,type2,...> ...suite
de la declaration...

Compilation séparée : pour les templates, il faut tout mettre
(déclarations et définitions) dans le fichier d’en-tête (.h).

Programmation Orientée Objet – Cours 24 : SDA & Templates – 53 / 54

Synthèse

Objectifs

S.D.A.

Listes

Piles

Programmation
générique

Déclaration de
modèles

Instanciation

Spécialisation

Compilation
séparée

Conclusion

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Ce que j’ai appris aujourd’hui

▶ Les bases de la formalisation des données : les structures
de données abstraites

▶ Les deux structures de données abstraites les plus utilisées
en informatique (en plus des tableaux et des types
élémentaires) : les listes chaînées et les piles

▶ A pouvoir faire des modèles génériques de traitements ou de
classes, indépendamment du type, ce que l’on appelle de la
programmation générique.
▶ Comment déclarer de tels modèles
▶ Comment en créer des instances
▶ Comment spécialiser certains modèles

La suite
▶ Outils de la librairie standard

Programmation Orientée Objet – Cours 24 : SDA & Templates – 54 / 54

	Synthèse
	Objectifs
	S.D.A.
	Listes
	Piles
	Programmation générique
	Déclaration de modèles
	Instanciation
	Spécialisation
	Compilation séparée
	Conclusion

