Objectifs ObIECtifs de Ia Semaine

Programmatlon Orientée Objet (C++) : Nous voici arrivés au terme de I'introduction des concepts de

Synthése des concepts de I'orienté objets bases de loriente-objets.

Pour une étude de cas récapitulative de ces concepts :

Jamila Sam https ://www.coursera.org/learn/programmation-orientee-objet-
cpp/home/week/7
Laboratoire d’Intelligence Atrtificielle
Faculté 1&C)
w Semaine 7
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL Programmation orientée-objets — Synthése POO — 1/6 EPFL Programmation orientée-objets — Synthése POO — 2/6
- - - -
Etat des lieux - Qu’avons nous vu en programmation ?
ynthese
programmer c’est décomposer une tache a automatiser en une
séquence d’instructions (traitements) et des données
operent sur
Caatements)
Vous avez abordé jusqu’ici :
. , influencent
1. les bases de la programmation procédurale ;
2.1 la programmation orienté jets. ; . . n
es bases de la programmation orientée objets en programmation orientée objets, on regroupe dans le méme
objet les traitements et les données qui lui sont spécifiques
= |l nous reste a aborder quelques thémes (principe d’encapsulation)
d.ap.prof’ondlssement : st'ruc’Fu.res de données et «templates» o OBJET
ainsi gu’un survol de la librairie standard Ny attributs | méthodes
sT®
Y \
Interface
(partie visible)
Détails d’
5@5‘? Szao:‘-zs S"::;L 82::"25 Implémentation
& Jean-Cédric Chappelier & Jean-Cédric Chappelier (partie interne/cachée)
=PFL fom orientée-obi : c=PFL A orieniée-obi :
Programmation orientée-objets — Synthése POO — 3/6 | Programmation orientée-objets — Synthése POO — 4/6

Qu’avons nous vu en programmation ? Qu’avons nous vu en programmation ?

Synthése Synthese

en programmation orientée objets, on regroupe dans le méme
objet les traitements et les données qui lui sont spécifiques
(principe d’encapsulation)

programmer c’est décomposer une tache & automatiser en une
séquence d’instructions (traitements) et des données

Algorithme SDA. . ___ Objet
: - Encapsulation et Abstraction
Traitements Données
Classes
Variables

Héritage simple/multiple
Polymorphisme

Classes abstraites/virtuelles
Résolution des collisions de noms

Expressions & Opérateurs
Structures de contrble
Fonctions Portée

Chaines de caractéres Traitements Données
Tableaux statiques Méthodes Attributs
Tableaux dynamiques Constructeurs & Destructeurs Appels aux constructeurs
Structures Const des attributs (hérités)
) Pointeurs Virtuelles (pures) Statiques
Entrées/Sorties Surcharge d’opérateurs(interne/externe)
Privés/protégés/publiques

Samiaam Samiacam Hérités/cachés (: :)

& Jean-Cédric Chappelier & Jean-Cédric Cl i

EPFL Programmation orientée-objets — Synthése POO — 4/6 EPFL Programmation orientée-objets — Synthése POO — 4/6

FONDAMENTAUX « fondamentaux » de la POO
Fondamentaux Fondamentaux 1. encapsulation Objet = attributs + méthodes
class Rectangle {
1. déclarez avant d’utiliser p“Zilgie crface () | :
u ur I
> variables
int 1i; private:

vector<double> v;
» fonctions s prototype
double sin (double x);
bool cherche_valeur (Listechainee 1, Valeur v);

double hauteur;
double largeur;

}

> classes w Attributs et prototypes des méthodes Attributs et méthodes publiques w Interface de la classe
(abstraction)
2. mod_ularisez / décomposez / pensez « atomique » et 2. héritage
<é2b§§£;pﬁon(qwestcequbnveutﬂ class RectangleColore : public Rectangle ({
2.2 implémentation (comment ¢a se réalise ?) Couleur couleur;
2.3 syntaxe (comment ca s'écrit ?) AERERE
2.4 tests (ou sont mes fautes, comment pourrais-je les tester ?) 3. polymorphisme le choix du type se fait a I'exécution, en
fonction de la nature réelles des instances (typage
©EPFL 2024-25 ©EPFL 2024-25 dyn am iq U e)
e i Croppale & Soan Cosic Chappeler Ingrédients : Pointeurs/Références + méthodes virtuelles

c=PrL

cpr-
Programmation orientée-objets — Synthése POO — 5/6 = Pi' L Programmation orientée-objets — Synthése POO — 6/6

	Objectifs
	Synthèse
	Fondamentaux

