swervoce \fjdéos et transparents

Programmation Orientée Objet (C++) :
Héritage multiple

https ://www.coursera.org/learn/programmation-orientee-objet-

cpp/home/week/6
Jamila Sam

Laboratoire d'Intelligence Artificielle w Semaine 6

Faculté 1&C
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
cpe -—pr-
= P' L Programmation Orientée Objet — Cours 22 : Héritage multiple — 1/19 = P'- L Programmation Orientée Objet — Cours 22 : Héritage multiple — 2/19

. Héritage multiple Z Concepts fondamentaux

Concepts
centraux centraux
class nomSousClasse: [public] nomSuperClassel,
[public] nomSuperClasseN
Collision de noms d’attributs/méthodes : c’est la sous-classe qui > Buts, syntaxe (aucune difficulté)
hérite de ces attributs/méthodes qui doit définir /e sens de leur
utilisation » Ordre d’appel des constructeurs/destructeurs

. , . , L. . rdr Sclaration d’héri
Classe virtuelle : pour éviter qu’une sous-classe hérite plusieurs wr ordre de déclaration d'héritage

fois d’'une méme super-classe, il faut déclarer les dérivations » Sens (= sémantique) de I'héritage multiple ?

concernées comme virtuelles » diagramme en losange

NomSousClasse: [public] wvirtual NomSuperClasseVirtuelle > héritage et classes virtuel(les)

Constructeur :

SousClasse (liste de parametres)
: SuperClassel (argumentsl),

» appel du constructeur de la classe virtuelle

SuperClasseN (argumentsN) ,

attributl (valeurl), ..., attributK(valeurK)
©EPFL 2024-25 {} ©EPFL 2024-25
Jamila Salm y . L, e e . Jamila Sa'm
seanceariccneier G'est | classe la plus dérivée quiinitialise la super-classe & loan Cécc Creppaler
cpr- . cpr-
= Pi' L Vi rtue”e Programmation Orientée Objet — Cours 22 : Héritage multiple — 3/19 = Pi' L Programmation Orientée Objet — Cours 22 : Héritage multiple — 4/19

Etude de cas (simples) TROIS solutions

s Que faut il corriger pour que le code suivant compile : s Il'y a trois possibilités :
caes
Cas 4

» ajouter un constructeur par défaut a D avec appel explicite au
constructeur de A :

class A { public: A(int x)

a(x) {} class A { public: A(int x) : a(x) {}

private: int a; }; private: int ga; };
class B : public virtual A { public: B() : A(0) {} b class B : public virtual A { public: B() : A(0){} };
class C : public virtual A { public: C() : A(1) {} }; class C : public virtual A { public: C() : A(Ll){} 1};

class D : public B, public C { b class D : public B, public C { public: D() : A(42){}};

int main () int main ()

{ {
D di; D di;
return 0O; return 0O;
} }
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
-—pr- -—pr-
= P'- L Programmation Orientée Objet — Cours 22 : Héritage multiple — 5/19 = P'- L

Programmation Orientée Objet — Cours 22 : Héritage multiple — 6/19

TROIS solutions TROIS solutions

ot Il'y a trois possibilités : Il'y a trois possibilités :
o » ajouter un constructeur par défaut a A : » supprimer les héritages virtuels

Cas 4

class A { public: A(int x = 42) : a(x) {} class A { public: A(int x) : a(x) {}

private: int a; }i private: int a; };
class B : public virtual A { public: B() : A(0) {} 1}; class B : public A { public: B() : A(0) {} 1};
class C : public virtual A { public: C() : A(1l) {} }; class C : public A { public: C() : A(l) {} 1};
class D : public B, public C ({ }; class D : public B, public C { };
int main () int main ()
{ {
D di; D di;
return O; return 0O;
} }
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
-pr- -pr-
[= Pi' L Programmation Orientée Objet — Cours 22 : Héritage multiple — 7/19 = Pi' L

Programmation Orientée Objet — Cours 22 : Héritage multiple — 8/19

Cas 1
Cas2
Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Cas 1
Cas 2
Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Cas numeéro 2

Le code suivant compile-t-il ?

virtual?
class A
{ public:

class B

{ 1}

class C
{1}

class D
{1}

int main ()
{
D dil;
dl.f();

non! (ambiguité)

void f () const { cout <<

public virtual A

public virtual A

public B, public C

return 0O;

}

Programmation Orientée Objet — Cours 22 : Héritage multiple — 9/19

w OUI!

...et sans les

AT})

Cas numeéro 3 : QUATRE solutions
Il'y a quatre corrections possibles :

> supprimer une des ambiguités :

class A
{ public:

class B
{ public:

class C
{ ¥

class D

{ ¥

int main ()
{
D di;
dl.f();

void f () const { cout <<

public virtual A

void f () const { cout <<

public virtual A

public B, public C

return 0O;

Programmation Orientée Objet — Cours 22 : Héritage multiple — 11/19

"R}

"B i} b

Cas 1
Cas 2
Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Cas 1
Cas 2
Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Cas numéro 3

Le code suivant compile-t-il ?

class A
{ public:

class B
{ public:

class C
{ public:

class D

{ ¥

int main ()
{
D di;
dl.f();

void f () const { cout <<

public virtual A

void f () const { cout <<

public virtual A

void f () const { cout <<

public B, public C

return 0O;

Programmation Orientée Objet — Cours 22 : Héritage multiple — 10/19

== NON!

A})i
"B})i
"o})i

Cas numéro 3 : QUATRE solutions

Il'y a quatre corrections possibles :
» désambiguiser I'appel :

class A
{ public:

class B
{ public:

class C
{ public:

class D

{ ¥

int main ()

{
D di;

dl.A::£(); // ou B:: ou C::

void f () const { cout <<

public virtual A

void f () const { cout <<

public virtual A

void f () const { cout <<

public B, public C

return 0O;

Programmation Orientée Objet — Cours 22 : Héritage multiple — 12/19

AU})
"B} b
T} b

Cas 1
Cas 2
Cas 3
Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Cas 1
Cas 2
Cas 3
Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Cas numéro 3 : QUATRE solutions

Il'y a quatre corrections possibles :
» désambiguiser a l'aide de using:
class A

{ public:

class B
{ public:

class C
{ public:

class D
{ public:

int main ()

{

D di;
dl.f();

void f () const

: public virtual

void f () const

: public virtual

void f () const

using A::f; };

return 0O;

Cas numeéro 4

Le code suivant compile-t-il ?

class A

{

class B

{

class C

{

class D

{

int main ()

{

public:

public:

public:

}i

D di;
dl.f();

{ cout << "A "; } };

A
{ cout << "B "; } };

A
{ cout << "C "; } };

: public B, public C

// ou B::f ou C::f

Programmation Orientée Objet — Cours 22 : Héritage multiple — 13/19

== NON!

virtual void f () const { cout << "A "; } };

: public virtual

void f () const

: public virtual

void f () const

return 0O;

A
{ cout << "B "; } };

A
{ cout << "C "; } };

: public B, public C

Programmation Orientée Objet — Cours 22 : Héritage multiple — 15/19

Cas numéro 3 : QUATRE solutions

Il'y a quatre corrections possibles :
» désambiguiser en redéfinissant :
o class A

Cas { public: void f () const { cout << "A "; } };

class B : public virtual A
{ public: void f() const { cout << "B "; } };

class C : public virtual A
{ public: void f () const { cout << "C "; 1} };

class D : public B, public C
{ public: void f() const { cout << "D "; } };

int main ()

D di;
dl.f();
return 0O;
©EPFL 2024-25 }
Jamila Sam
& Jean-Gédric Chappelier
-pr-
= P'- L Programmation Orientée Objet — Cours 22 : Héritage multiple — 14 /19

Cas numeéro 4 : DEUX solutions

Il n’y a ici que deux corrections possibles :

Gas 3 les solutions
» 2 (désambiguiser I'appel) :
dl.A::f(); // ni B:: ni C::

» et 3 (utiliser using):

class D : public B, public C
{ public: using A::f; }; // ni B::f ni C::f

NE fonctionnent PAS :

no unique final overrider for
'virtual void A::f() const' in 'D'

De la norme C++ :
« In a derived class, if a virtual member function of a base class
subobject has more than one final overrider the program is

(©EPFL 2024-25 .

Jamila Sam I”'formed. »

& Jean-Cédric Chappelier

[- P [- L
=rr Programmation Orientée Objet — Cours 22 : Héritage multiple — 16/19

Cas numeéro 4 : DEUX solutions

Ce qui ne nous laisse que deux corrections possibles :
> supprimer 'ambiguité (ce qui n’est souvent pas possible) ;

Cas 4

» redéfinir la méthode :

class A
{ public: virtual void f () const { cout << "A "; } };

class B : public virtual A
{ public: void f () const override { cout << "B "; } };

class C : public virtual A
{ public: void f () const override { cout << "C "; } };

class D : public B, public C
{ public: void f () const override { cout << "D "; } };

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 17/19

Pour préparer le prochain cours

> Vidéos et quiz du MOOC semaine 7 :

> Etude de cas : présentation et modélisation du probléme
[12 :16]

> Etude de cas : affichage polymorphique [8 :58]

> Etude de cas : surcharge d’opérateur et premiére version
[13 :55]

» Etude de cas : modélisation des mécanismes [14 :46]

> Etude de cas : copie profonde [14 :36]

» Le prochain cours :
> de 14h15 a 15h (compléments)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 19/19

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Derniere question

Quelle différence entre les cas 3 et 4 ?

Que change le virtual ?
Donnez un exemple illustratit.

D un_d;
Ax ptr(&un_d);
ptr—>£();

Programmation Orientée Objet — Cours 22 : Héritage multiple — 18/19

	Support MOOC
	Concepts centraux
	Etude de cas
	Cas 1
	Cas 2
	Cas 3
	Cas 4

