
Support MOOC

Concepts
centraux

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation Orientée Objet (C++) :

Héritage multiple

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

Programmation Orientée Objet – Cours 22 : Héritage multiple – 1 / 19



Support MOOC

Concepts
centraux

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Vidéos et transparents

https ://www.coursera.org/learn/programmation-orientee-objet-
cpp/home/week/6

☞ Semaine 6

Programmation Orientée Objet – Cours 22 : Héritage multiple – 2 / 19



Support MOOC

Concepts
centraux

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Héritage multiple

class nomSousClasse: [public] nomSuperClasse1, ...
[public] nomSuperClasseN

Collision de noms d’attributs/méthodes : c’est la sous-classe qui
hérite de ces attributs/méthodes qui doit définir le sens de leur
utilisation

Classe virtuelle : pour éviter qu’une sous-classe hérite plusieurs
fois d’une même super-classe, il faut déclarer les dérivations
concernées comme virtuelles

NomSousClasse: [public] virtual NomSuperClasseVirtuelle

Constructeur :
SousClasse(liste de parametres)

: SuperClasse1(arguments1),
...
SuperClasseN(argumentsN),
attribut1(valeur1), ..., attributK(valeurK)

{}

C’est la classe la plus dérivée qui initialise la super-classe
virtuelle Programmation Orientée Objet – Cours 22 : Héritage multiple – 3 / 19



Support MOOC

Concepts
centraux

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Concepts fondamentaux

▶ Buts, syntaxe (aucune difficulté)

▶ Ordre d’appel des constructeurs/destructeurs
☞ ordre de déclaration d’héritage

▶ Sens (= sémantique) de l’héritage multiple?
▶ diagramme en losange
▶ héritage et classes virtuel(les)
▶ appel du constructeur de la classe virtuelle

Programmation Orientée Objet – Cours 22 : Héritage multiple – 4 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Etude de cas (simples)

Que faut il corriger pour que le code suivant compile :

class A { public: A(int x) :
a(x) {}

private: int a; };

class B : public virtual A { public: B() : A(0) {} };

class C : public virtual A { public: C() : A(1) {} };

class D : public B, public C { };

int main()
{
D d1;
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 5 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

TROIS solutions

Il y a trois possibilités :
▶ ajouter un constructeur par défaut à D avec appel explicite au

constructeur de A :
class A { public: A(int x) : a(x) {}

private: int a; };

class B : public virtual A { public: B() : A(0){} };

class C : public virtual A { public: C() : A(1){} };

class D : public B, public C { public: D() : A(42){}};

int main()
{
D d1;
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 6 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

TROIS solutions

Il y a trois possibilités :
▶ ajouter un constructeur par défaut à A :

class A { public: A(int x = 42) : a(x) {}
private: int a; };

class B : public virtual A { public: B() : A(0) {} };

class C : public virtual A { public: C() : A(1) {} };

class D : public B, public C { };

int main()
{
D d1;
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 7 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

TROIS solutions

Il y a trois possibilités :
▶ supprimer les héritages virtuels

class A { public: A(int x) : a(x) {}
private: int a;};

class B : public A { public: B() : A(0) {} };

class C : public A { public: C() : A(1) {} };

class D : public B, public C { };

int main()
{
D d1;
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 8 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 2

Le code suivant compile-t-il ? ☞ OUI ! ...et sans les
virtual? non ! (ambiguïté)
class A
{ public: void f() const { cout << "A "; } };

class B : public virtual A
{ };

class C : public virtual A
{ };

class D : public B, public C
{ };

int main()
{
D d1;
d1.f();
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 9 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 3

Le code suivant compile-t-il ? ☞ NON!

class A
{ public: void f() const { cout << "A "; } };

class B : public virtual A
{ public: void f() const { cout << "B "; } };

class C : public virtual A
{ public: void f() const { cout << "C "; } };

class D : public B, public C
{ };

int main()
{
D d1;
d1.f();
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 10 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 3 : QUATRE solutions
Il y a quatre corrections possibles :
▶ supprimer une des ambiguïtés :
class A
{ public: void f() const { cout << "A "; } };

class B : public virtual A
{ public: void f() const { cout << "B "; } };

class C : public virtual A
{ };

class D : public B, public C
{ };

int main()
{
D d1;
d1.f();
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 11 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 3 : QUATRE solutions
Il y a quatre corrections possibles :
▶ désambiguiser l’appel :
class A
{ public: void f() const { cout << "A "; } };

class B : public virtual A
{ public: void f() const { cout << "B "; } };

class C : public virtual A
{ public: void f() const { cout << "C "; } };

class D : public B, public C
{ };

int main()
{
D d1;
d1.A::f(); // ou B:: ou C::
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 12 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 3 : QUATRE solutions
Il y a quatre corrections possibles :
▶ désambiguiser à l’aide de using :
class A
{ public: void f() const { cout << "A "; } };

class B : public virtual A
{ public: void f() const { cout << "B "; } };

class C : public virtual A
{ public: void f() const { cout << "C "; } };

class D : public B, public C
{ public: using A::f; }; // ou B::f ou C::f

int main()
{
D d1;
d1.f();
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 13 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 3 : QUATRE solutions
Il y a quatre corrections possibles :
▶ désambiguiser en redéfinissant :
class A
{ public: void f() const { cout << "A "; } };

class B : public virtual A
{ public: void f() const { cout << "B "; } };

class C : public virtual A
{ public: void f() const { cout << "C "; } };

class D : public B, public C
{ public: void f() const { cout << "D "; } };

int main()
{
D d1;
d1.f();
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 14 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 4

Le code suivant compile-t-il ? ☞ NON!

class A
{ public: virtual void f() const { cout << "A "; } };

class B : public virtual A
{ public: void f() const { cout << "B "; } };

class C : public virtual A
{ public: void f() const { cout << "C "; } };

class D : public B, public C
{ };

int main()
{
D d1;
d1.f();
return 0;

}

Programmation Orientée Objet – Cours 22 : Héritage multiple – 15 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 4 : DEUX solutions

Il n’y a ici que deux corrections possibles :

les solutions
▶ 2 (désambiguiser l’appel) :

d1.A::f(); // ni B:: ni C::

▶ et 3 (utiliser using) :
class D : public B, public C
{ public: using A::f; }; // ni B::f ni C::f

NE fonctionnent PAS :

no unique final overrider for
'virtual void A::f() const' in 'D'

De la norme C++ :
« In a derived class, if a virtual member function of a base class
subobject has more than one final overrider the program is
ill-formed. »

Programmation Orientée Objet – Cours 22 : Héritage multiple – 16 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Cas numéro 4 : DEUX solutions

Ce qui ne nous laisse que deux corrections possibles :
▶ supprimer l’ambiguïté (ce qui n’est souvent pas possible) ;

▶ redéfinir la méthode :

class A
{ public: virtual void f() const { cout << "A "; } };

class B : public virtual A
{ public: void f() const override { cout << "B "; } };

class C : public virtual A
{ public: void f() const override { cout << "C "; } };

class D : public B, public C
{ public: void f() const override { cout << "D "; } };

Programmation Orientée Objet – Cours 22 : Héritage multiple – 17 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Dernière question

Quelle différence entre les cas 3 et 4?
Que change le virtual?
Donnez un exemple illustratif.

D un_d;
A* ptr(&un_d);
ptr->f();

Programmation Orientée Objet – Cours 22 : Héritage multiple – 18 / 19



Support MOOC

Concepts
centraux

Etude de cas
Cas 1

Cas 2

Cas 3

Cas 4

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer le prochain cours

▶ Vidéos et quiz du MOOC semaine 7 :
▶ Etude de cas : présentation et modélisation du problème

[12 :16]
▶ Etude de cas : affichage polymorphique [8 :58]
▶ Etude de cas : surcharge d’opérateur et première version

[13 :55]
▶ Etude de cas : modélisation des mécanismes [14 :46]
▶ Etude de cas : copie profonde [14 :36]

▶ Le prochain cours :
▶ de 14h15 à 15h (compléments)

Programmation Orientée Objet – Cours 22 : Héritage multiple – 19 / 19


	Support MOOC
	Concepts centraux
	Etude de cas
	Cas 1
	Cas 2
	Cas 3
	Cas 4


