Support MOOC

Concepts
centraux

Etude de cas

Programmation Orientée Objet (C++) :
Héritage multiple

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 1/19



Support MOOC Vidéos et transparents

https ://www.coursera.org/learn/programmation-orientee-objet-
cpp/home/week/6

= Semaine 6

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 2/ 19



Z, Héritage multiple Z

class nomSousClasse: [public] nomSuperClassel,
[public] nomSuperClasseN

Collision de noms d’attributs/méthodes : c’est la sous-classe qui
hérite de ces attributs/méthodes qui doit définir /e sens de leur
utilisation

Classe virtuelle : pour éviter qu’'une sous-classe hérite plusieurs
fois d’'une méme super-classe, il faut déclarer les dérivations
concernées comme virtuelles

NomSousClasse: [public] wirtual NomSuperClasseVirtuelle

Constructeur :

SousClasse (liste de parametres)
: SuperClassel (argumentsl),

SuperClasseN (argumentsN) ,

attributl (valeurl), ..., attributK(valeurkK)
©EPFL 2024-25 { }
Jamila Sam

siencssconameeie G'egt |a classe la plus dérivée qui initialise la super-classe
= .
EP'- L V|rtue”e Programmation Orientée Objet — Cours 22 : Héritage multiple — 3/19



Concepts fondamentaux

Concepts
centraux

> Buts, syntaxe (aucune difficulté)

» Ordre d’appel des constructeurs/destructeurs
= ordre de déclaration d’héritage

» Sens (= sémantique) de I'héritage multiple ?
» diagramme en losange
> héritage et classes virtuel(les)
» appel du constructeur de la classe virtuelle

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 4 /19



Etude de cas (simples)

Que faut il corriger pour que le code suivant compile :

class A { public: A (int x)
a(x) {}
private: int a; };

class B : public virtual A { public: B() : A(0) {}
class C : public virtual A { public: C() : A(1l) {}
class D : public B, public C {

int main ()
{
D di;
return O;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 5/19



TROIS solutions

o Il'y a frois possibilités :

» ajouter un constructeur par défaut a D avec appel explicite au
constructeur de A :
class A { public: A(int x) : a(x) {}
private: int a; }i

class B : public virtual A { public: B() : A(0){} };
class C : public virtual A { public: C() : A(1){} };
class D : public B, public C { public: D() : A(42){}};
int main ()

{

D di;
return O;

©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 6/ 19



©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

TROIS solutions

Il'y a trois possibilités :
» ajouter un constructeur par défaut a A :

class A { public: A(int x = 42) : a(x) {}
private: int a; };

class B : public virtual A { public: B() : A(0) {} };
class C : public virtual A { public: C() : A(1) {} };
class D : public B, public C { }i
int main ()

{

D di;
return 0;

Programmation Orientée Objet — Cours 22 : Héritage multiple — 7/ 19



TROIS solutions

Il'y a trois possibilités :
> supprimer les héritages virtuels

class A { public: A(int x) : a(x) {}
private: int a;};

class B : public A { public: B() : A(O0) {} 1};
class C : public A { public: C() : A(1) {} };
class D : public B, public C { bi

int main ()

{
D di;
return 0;
}
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation Orientée Objet — Cours 22 : Héritage multiple — 8/ 19



Cas numeéro 2

: Le code suivant compile-t-il? = OUI! ..etsans les
Cas2 virtual? non!(ambiguité)

Cas4 class A

{ public: void f () const { cout << "A "; } };

class B : public virtual A
{4

class C : public virtual A
{ )

class D : public B, public C
{4

int main ()

{
D di;
dl.f();
©EPFL 2024-25 return 0;
;.aﬂai:\-scae'";nc Chappelier }
=PFL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 9/ 19



Cas numeéro 3

Le code suivant compile-t-il ? = NON!
Cas 2
Cas3 class A
e { public: void f() const { cout << "A "; } };
class B : public virtual A
{ public: void f() const { cout << "B "; } };
class C : public virtual A
{ public: void f() const { cout << "C "; } };
class D : public B, public C
{4
int main ()
{
D di;
dl.£();
return O;
©EPFL 2024-25
Jamila Sam }
& Jean-Cédric Chappelier
=PFL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 10/19



Cas numéro 3 : QUATRE solutions

Il'y a quatre corrections possibles :
» supprimer une des ambiguités :
C§; class A
Cast { public: void f() const { cout << "A "; } };

class B : public wvirtual A
{ public: void f() const { cout << "B "; } };

class C : public wvirtual A
{4

class D : public B, public C
{4

int main ()
{
D di;
dl.f();
return O;
©EPFL 2024-25 }

Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 22 : Héritage multiple — 11/19



Cas 2
Cas3

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Cas numéro 3 : QUATRE solutions

Il'y a quatre corrections possibles :
> désambiguiser I'appel :

class A
{ public:

class B
{ public:

class C
{ public:

class D
{1

int main ()

{
D di;

void f() const { cout << "A "; } };

public virtual A
void f() const { cout << "B "; } };

public virtual A
void f() const { cout << "C "; } };

public B, public C

dl.A::f(); // ou B:: ou C::
return O;

Programmation Orientée Objet — Cours 22 : Héritage multiple — 12/19



Cas 2
Cas3

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Cas numéro 3 : QUATRE solutions

Il'y a quatre corrections possibles :
» désambiguiser a l'aide de using :

class A
{ public:

class B
{ public:

class C
{ public:

class D
{ public:

int main ()
{
D di;
dl.f();

void f() const { cout << "A "; } };

public virtual A
void f() const { cout << "B "; } };

public virtual A
void f() const { cout << "C "; } };

public B, public C
using A::f; }; // ou B::f ou C::f

return O;

Programmation Orientée Objet — Cours 22 : Héritage multiple — 13/19



Cas numéro 3 : QUATRE solutions

Il'y a quatre corrections possibles :
> désambiguiser en redéfinissant :
o class A
Cast { public: void f() const { cout << "A "; } };

class B : public wvirtual A
{ public: void f() const { cout << "B "; } };

class C : public wvirtual A
{ public: void f() const { cout << "C "; } };

class D : public B, public C
{ public: void f() const { cout << "D "; } };

int main ()
{
D di;
dl.f();

return O;
©EPFL 2024-25 }

Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 22 : Héritage multiple — 14 /19



Cas numeéro 4

Le code suivant compile-t-il ? = NON!

class A
{ public: virtual void f() const { cout << "A "; } };

class B : public virtual A
{ public: void f() const { cout << "B "; } };

class C : public virtual A
{ public: void f() const { cout << "C "; } };

class D : public B, public C
{1}

int main ()
{
D di;
dli.f();

return 0;
©EPFL 2024-25 }
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 22 : Héritage multiple — 15/19



Cas numeéro 4 : DEUX solutions

Il N’y aici que deux corrections possibles :
les solutions
> 2 (désambiguiser I'appel) :
dl.A::f(); // ni B:: ni C::

Cas 4

> et 3 (utiliser using) :

class D : public B, public C
{ public: using A::f; }; // ni B::f ni C::f

NE fonctionnent PAS :

no unique final overrider for
'virtual void A::f() const' in 'D'

De la norme C++ :
« In a derived class, if a virtual member function of a base class
subobject has more than one final overrider the program is

©EPFL 2024-25 .

Jamia Sam ill-formed. »

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 22 : Héritage multiple — 16/ 19



Cas numeéro 4 : DEUX solutions

» redéfinir la méthode :

class A

{ public:

class B

{ public:

class C

{ public:

class D

{ public:

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

virtual void f () const { cout <<

public virtual A
void f () const override { cout <<

public virtual A
void f () const override { cout <<

public B, public C
void f () const override { cout <<

Programmation Orientée Objet — Cours 22 :

Ce qui ne nous laisse que deux corrections possibles :
> supprimer 'ambiguité (ce qui n’est souvent pas possible) ;

AT} )

"B "; } };

"o} b

"D i} };

Héritage multiple — 17 /19



Derniére question

Quelle différence entre les cas 3 et 4?
Que change le virtual?
Donnez un exemple illustratif.

D un_d;
Ax ptr(&un_d);
ptr->f();

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 18/19



Pour préparer le prochain cours

Cas 4

> Vidéos et quiz du MOOC semaine 7 :

» Etude de cas : présentation et modélisation du probleme
[12 :16]

» Etude de cas : affichage polymorphique [8 :58]

> Etude de cas : surcharge d’opérateur et premiéere version
[13 :55]

> Etude de cas : modélisation des mécanismes [14 :46]

> Etude de cas : copie profonde [14 :36]

» Le prochain cours :
» de 14h15 a 15h (compléments)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 22 : Héritage multiple — 19/ 19



	Support MOOC
	Concepts centraux
	Etude de cas
	Cas 1
	Cas 2
	Cas 3
	Cas 4


