
Support MOOC

Concepts
centraux

Compléments :
compilation
séparée

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation Orientée Objet :

Constructeurs/Destructeurs (résumé)
Compilation séparée

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 1 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Vidéos, transparents et quiz

https://www.coursera.org/learn/programmation-orientee-objet-cpp/home/week/2

☞ Semaine 2

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 2 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Construction/Destruction

Méthode constructeur(initialisation des attributs) :
NomClass(liste_arguments)
: attribut1(...), /* bloc optionel:
.... appels aux constructeurs
attributN(...) des attributs */

{
// autres opérations
}

Méthode constructeur de copie:
NomClasse(const NomClasse& obj)
:...
{...}

Méthode destructeur(ne peut être surchargée) :
˜NomClasse() {
// opérations (de libération)

}

Des versions par défaut (minimales) de ces méthodes sont
générées automatiquement par C++ si on ne les fournit pas

Règle: si on en définit une explicitement, il vaut mieux toutes les
redéfinir !

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 3 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Approche modulaire

Jusqu’à maintenant vos programmes étaient écrits en une seule
fois, dans un seul fichier.

Cette approche n’est pas réaliste pour des programmes plus
conséquents, qui nécessitent partage de composants,
maintenance séparée, réutilisation, ...

On préfére une approche modulaire

c’est-à-dire une approche qui
décompose la tâche à résoudre en sous-tâches

implémentées sous la forme de modules génériques (qui
pourront être réutilisés dans d’autres contextes).

Chaque module correspond alors à une tâche ponctuelle, à un
ensemble cohérent de données, à un concept de base, etc...

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 4 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Réutilisabilité

La conception d’un programme doit tenir compte de deux aspects
importants :
▶ la réutilisation des objets/fonctions existants : bibliothèques

logicielles (« libraries » en anglais);
(les autres/passé −→ nous/présent)

▶ la réutilisabilité des objets/fonctions nouvellement créés.
(nous/présent −→ les autres/futur)

Remarque : vous pouvez vous-même créer vos propres
bibliothèques.
(mais non abordé dans ce cours)

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 5 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Conception modulaire

Concrètement, cela signifie que les types, structures de données
et fonctions correspondant à un « concept de base » seront
regroupés dans un fichier qui leur est propre.

Par exemple, on définira la classe Bacterium dans un fichier à
part.

☞ séparation des déclarations des objets de leur utilisation
effective (dans un main()).

Concrètement, cela crée donc plusieurs fichiers séparés, qu’il
faudra regrouper (« lier ») pour faire un programme.

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 6 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Compilation séparée

☞ Pouquoi faire cela ?
▶ Pour rendre réutilisable (exemple Vec2d) : évite de

réinventer la roue à chaque fois
▶ Pour maintenir plus facilement : pas besoin de tout

recompiler le jour où on corrige une erreur dans Vec2d
▶ Pour pouvoir développer des programmes

indépendamment, c’est-à-dire même si le code source n’est
pas disponible

▶ Distribuer des bibliothèques logicielles (morceaux de code)
sans en donner les codes sources (protection intellectuelle).

☞ Mais comment alors faire un tout (un programme complet) ?
Comment main() connait-il le reste ?

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 7 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Compilation séparée

La partie déclaration est la partie visible du module que l’on écrit,
qui va permettre son utilisation (et donc sa réutilisation).

C’est elle qui est utile aux autres fichiers pour utiliser les objets
déclarés.

La partie définition est l’implémentation du code correspondant et
n’est pas directement nécessaire pour l’utilisateur du module. Elle
peut être cachée (aux autres).

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 8 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Compilation séparée

De ce fait, il est nécessaire (en conception modulaire) de séparer
ces parties en deux fichiers :
▶ les fichiers de déclaration (fichiers « headers »), avec une

extension .h ou .hpp).
Ce sont ces fichiers qu’on inclut en début de programme par
la commande #include

▶ les fichiers de définitions (fichiers sources, avec une
extension .cc ou .cpp)
Ce sont ces fichiers que l’on compile pour créer du code
exécutable.

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 9 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Compilation séparée

RAPPEL (les 3 facettes des fonctions) :

accord

concepteur/développeur

programmeur

utilisateur

programmeur

double f(double a,double b)

{
...

}

prototype définitionappel

z=f(x,y) double f(double,double);

fichier .h fichier .cc

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 10 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Compilation séparée (2)

La séparation des parties déclaration et définition en deux fichiers
permet une compilation séparée du programme complet :
▶ phase 1 : production de fichiers binaires (appelés fichiers

objets) correspondant à la compilation des fichiers sources
(.cc) contenant les parties définitions (et dans lesquels on
inclut (#include) les fichiers « headers » (.h) nécessaires) ;

▶ phase 2 : production du fichier exécutable final à partir des
fichiers objets.

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 11 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

CMake

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 12 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Conseils pour les inclusions

▶ n’inclure que ce qui est nécessaire et seulement dans le
fichier où c’est nécessaire

▶ évitez les clauses using namespace dans les fichiers
d’entête

▶ se préserver des inclusions multiples
#pragma once
au début de chaque fichier d’entête (usage pas supporté par
tous les compilateurs, mais en bonne voie de généralisation),
sinon:
#ifndef POOSV_NOM_DE_LA_CLASSE
#define POOSV_NOM_DE_LA_CLASSE
suivi de #endif
à la fin du fichier d’entête.

▶ si les types utilisés sont des pointeurs, préférez la
prédéclaration du type à l’inclusion du fichier .h/.hpp
correspondant dans le fichier d’entête. Le .h/.hpp sera
alors plutôt inclus dans le fichier de définition

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 13 / 14

Support MOOC

Concepts
centraux

Compléments :
compilation
séparée
Conseils pour les
inclusions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer le prochain cours

▶ Vidéos et quiz du MOOC semaine 3 :
▶ Variables et méthodes de classe [13:10]
▶ Surcharge d’opérateurs : introduction [11:09]
▶ Surcharge d’opérateurs : surcharge externe [17:28]
▶ Surcharge d’opérateurs : surcharge interne [12:08]
▶ Surcharge d’opérateurs : compléments [23:09]

▶ Le prochain cours :
▶ de 14h15 à 15h (résumé et quelques approfondissements)

Programmation Orientée Objet (C++) – Cours 17 : Constructeurs/Destructeurs – 14 / 14

	Support MOOC
	Concepts centraux
	Compléments : compilation séparée
	Conseils pour les inclusions

