==nvoce \jdéos, transparents et quiz

Programmation Orientée Objet (C++)
Introduction

https ://www.coursera.org/learn/programmation-orientee-objet/home/week/1
Jamila Sam
= Semaine 1

Laboratoire d’Intelligence Artificielle
Faculté 1&C

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL Programmation Orientée Objet — Cours 16 : Introduction POO — 1/12 EPFL Programmation Orientée Objet — Cours 16 : Introduction POO — 2/12
_ Concepts a voir durant le semestre . Qu’est-ce que la Programmation Orientée
Objets ?
Objet Dans les grandes lignes :
g‘capS”'at'O” et Abstraction > c’est une maniére de structurer les données et les traitements
asses . intéragissant dans un programme;
Héritage simple/multiple o . o
Polymorphisme » la POO n’est pas spécifique a un langage particulier
Classes abstraites/virtuelles » en POO, un objet regroupe les données et les traitements
Reésolution des collisions de noms relatifs & un concept particulier. Les objets interagissent entre
Traitements Données eux.
Méthodes Attributs
Constructeurs & Destructeurs Appels aux constructeurs . . _
Const des attributs (hérités) Un objet peut étre vu comme une struct :
Virtuelles (pures) Statiques
Surcharge d'operateurs(interne/externe) || » dotée de fonctions qui lui sont spécifiques (méthodes) et qui
Prives/protégés/publiques permettent de manipuler les données qu’elle contient;
Hérités/cachés (: :)

» dans laquelle I'accés direct aux données peut-étre interdit

I PRTIT . s .
OEPFL 202025 GEPFL 202425 pour définir un cadre d'utilisation précis.
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
cpre -pre
= Pi' L Programmation Orientée Objet — Cours 16 : Introduction POO — 3/12 = Pi' L Programmation Orientée Objet — Cours 16 : Introduction POO — 4/12

Concepts caractéristiques de la POO

Introduction

» Abstraction des données : les données sont manipulées a
I'aide de méthodes qui cachent leur représentation interne
= ON peut imposer que ces méthodes vérifient l'intégrité des

données (fiabilité)

= |'utilisation d’'une donnée ne dépend plus des choix faits pour
sa représentation (facilité de maintenance)

= des données différentes peuvent étre manipulées de maniére
identique(concision)
> Héritage : on peut prendre un type d’objets déja existant et lui
rajouter des données et/ou des méthodes pour en faire un
nouveau type d’objets

= on peut donc établir des liens sémantiques entre des types
d’'objets et éviter des redondances dans leurs descriptions
(concision).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

EPFL Programmation Orientée Objet — Cours 16 : Introduction POO — 5/12
~ ¢ Quelques defauts aussi ...
ntroduction
La POO peut :
> impliquer une certaine lourdeur pour le codage de choses
simples;
» engendrer des colts algorithmiques plus élevés pour la
manipulation de types élémentaires
En C++ les types fondamentaux (élémentaires) ne sont pas des
objets.
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
cPrL

Programmation Orientée Objet — Cours 16 : Introduction POO — 7/12

Introduction

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Introduction

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Avantages de la POO

» Facon naturelle de modéliser les données et traitements
intervenant dans un programme

» Modularité : le programme est composé d’'un ensemble
d’entités (types d’objets) aux roles bien déterminés

> Réutisabilité : chaque type d’objets peut étre réutilisé, sa
sémantique peut étre étendue par le biais de I'héritage

» Polymorphisme : un méme code peut s’appliquer a des
types d’objets différents

» Abstraction : la représentation des données est découplée
de leur utilisation. De plus des regles précises d’utilisation
des données peuvent étre imposées.

» d’énormes librairies déja écrites (Java, C#)

ws Efficacité dans la conception des programmes, concision du
codage, meilleures fiabilite et maintenabilité des programmes

Programmation Orientée Objet — Cours 16 : Introduction POO — 6/12

Exemples de langages orientés-objet

» Smalltalk (Xerox PARC, 1980);

» Obijective-C (Apple, Brad Cox, 1986);

» Python (Open source, Guido van Rossum, 1990) ;
» Java (Sun Microsystem, 1995)

» C# (Microsoft, 2001)

Par ailleurs, la plupart des langages non-objets admettent une
extension objets :

» Caml
» PERL
» PHP

> efc...

Programmation Orientée Objet — Cours 16 : Introduction POO — 8/12

Support MOOC
Introduction

Concepts
centraux

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Support MOOC
Introduction

Concepts
centraux

Etude de cas

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Encapsulation / Abstraction :
Résumé

MIEUX :

o® OBIET

attributs méthodes

Interface
(partie visible)

Détails d’
Implémentation
(partie interne/cachée)

Programmation Orientée Objet — Cours 16 : Introduction POO — 9/12

Etude de cas : modélisation d’un joueur...

> un joueur a un pseudonyme et un temps de jeu;
> il peut gagner des points;

> son score se calcule comme son nombre de points divisé par
son temps de jeu

Programmation Orientée Objet — Cours 16 : Introduction POO — 11/12

wees - Classes et instances

Introduction

Concepts
centraux

Etude de cas

class Concept {
public:
methodes importantes;

private:
attributs;

methodes secondaires;

bi

Concept une_instance;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 16 : Introduction POO — 10/12

weos - Pour préparer le prochain cours

Introduction

Concepts
centraux

Etude de cas

» Vidéos et quiz du MOOC semaine 2 :

> Constructeurs (introduction) [20 :02]

» Constructeurs par défaut en C++ [21 :33]
» Constructeur de copie [7 :54]

» Destructeurs [14 :56]

» Le prochain cours :
> de 14h15 a 15h (résumé et quelques approfondissements)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 16 : Introduction POO — 12/12

	Support MOOC
	Introduction
	Concepts centraux
	Etude de cas

