Support MOOC
Introduction

Concepts
centraux

Etude de cas

Programmation Orientée Objet (C++)
Introduction

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 16 : Introduction POO — 1/12

wenee \fidéos, transparents et quiz

https ://www.coursera.org/learn/programmation-orientee-objet/home/week/1

= Semaine 1

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 16 : Introduction POO — 2/12

Concepts a voir durant le semestre

Introduction

Objet

Encapsulation et Abstraction
Classes

Héritage simple/multiple
Polymorphisme

Classes abstraites/virtuelles
Résolution des collisions de noms

Traitements Données
Méthodes Attributs
Constructeurs & Destructeurs Appels aux constructeurs
Const des attributs (hérités)
Virtuelles (pures) Statiques
Surcharge d’opérateurs(interne/externe)

Privés/protégés/publiques
Hérités/cachés (: :)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 16 : Introduction POO — 3/12

Qu’est-ce que la Programmation Orientée
Objets ?

Introduction

Dans les grandes lignes :

» c’est une maniere de structurer les données et les traitements
intéragissant dans un programme;

» la POO n’est pas spécifique a un langage particulier

» en POO, un objet regroupe les données et les traitements
relatifs & un concept particulier. Les objets interagissent entre
eux.

Un objet peut étre vu comme une st ruct :

> dotée de fonctions qui lui sont spécifiques (méthodes) et qui
permettent de manipuler les données qu’elle contient;

» dans laquelle I'accés direct aux données peut-étre interdit
oEPFL 200025 pour définir un cadre d'utilisation précis.

Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 16 : Introduction POO — 4/12

Concepts caractéristiques de la POO

Introduction

» Abstraction des données : les données sont manipulées a
I'aide de méthodes qui cachent leur représentation interne
= ON peut imposer que ces méthodes vérifient I'intégrité des

données (fiabilité)

w |'utilisation d’'une donnée ne dépend plus des choix faits pour
sa représentation (facilité de maintenance)

ww des données différentes peuvent étre manipulées de maniére
identique(concision)

» Héritage : on peut prendre un type d’objets déja existant et lui
rajouter des données et/ou des méthodes pour en faire un
nouveau type d’objets

= ON peut donc établir des liens sémantiques entre des types
d’objets et éviter des redondances dans leurs descriptions
(concision).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 16 : Introduction POO — 5/12

Avantages de la POO

Introduction

» Facon naturelle de modéliser les données et traitements
intervenant dans un programme

> Modularité : le programme est composé d’un ensemble
d’entités (types d’objets) aux roles bien déterminés

> Reéutisabilité : chaque type d’objets peut étre réutilisé, sa
sémantique peut étre étendue par le biais de I'héritage

» Polymorphisme : un méme code peut s’appliquer a des
types d’objets différents

> Abstraction : la représentation des données est découplée
de leur utilisation. De plus des régles précises d'utilisation
des données peuvent étre imposées.

» d’énormes librairies déja écrites (Java, C#)

ww Efficacité dans la conception des programmes, concision du
codage, meilleures fiabilite et maintenabilite des programmes

©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 16 : Introduction POO — 6/12

Quelques défauts aussi ...

Introduction

La POO peut :
» impliquer une certaine lourdeur pour le codage de choses
simples;
» engendrer des colts algorithmiques plus élevés pour la
manipulation de types élémentaires

En C++ les types fondamentaux (élémentaires) ne sont pas des
objets.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 16 : Introduction POO — 7/12

Exemples de langages orientés-objet

Introduction

» Smalltalk (Xerox PARC, 1980);

> Objective-C (Apple, Brad Cox, 1986);

» Python (Open source, Guido van Rossum, 1990);
» Java (Sun Microsystem, 1995)

» C# (Microsoft, 2001)

Par ailleurs, la plupart des langages non-objets admettent une
extension objets :

» Caml

» PERL

> PHP

> etc...

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 16 : Introduction POO — 8/12

weee - Encapsulation / Abstraction -

Introduction

Concepts Résu mé

centraux

Etude de cas MIEUX .

oX OBIET

attributs méthodes

Interface
(partie visible)

Détails d’
Implémentation
(partie interne/cachée)

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PFL Programmation Orientée Objet — Cours 16 : Introduction POO - 9/12

Classes et instances

Concepts
centraux
class Concept {
public:
methodes importantes;
private:
attributs;
methodes secondaires;
bi
Concept une_instance;
©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 16 : Introduction POO — 10/12

Etude de cas : modélisation d’un joueur...

Etude de cas

» un joueur a un pseudonyme et un temps de jeu;

> il peut gagner des points;

> son score se calcule comme son nombre de points divisé par
son temps de jeu

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 16 : Introduction POO — 11/12

Pour préparer le prochain cours

Etude de cas

» Vidéos et quiz du MOOC semaine 2 :
» Constructeurs (introduction) [20 :02]
» Constructeurs par défaut en C++ [21 :33]
» Constructeur de copie [7 :54]
» Destructeurs [14 :56]

> Le prochain cours :
»> de 14h15 a 15h (résumé et quelques approfondissements)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 16 : Introduction POO — 12/12

	Support MOOC
	Introduction
	Concepts centraux
	Etude de cas

