
Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Programmation Orientée Objet :

Gestion des erreurs
et

Divers compléments

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté I&C

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 1 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Les acquis du premier semestre

Programmer c’est décomposer une tâche à automatiser en une
séquence d’instructions (traitements) et des données

Traitements Données
Algorithmes S.D.A.

Variables
Expressions & Opérateurs
Structures de contrôle
Fonctions Portée

Chaînes de caractères
Tableaux de taille fixe
Tableaux dynamiques
Structures
Pointeurs

Entrées/Sorties

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 2 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Objectifs du second semestre

1. Apprendre à programmer de façon plus concise et modulaire
mais aussi plus fiable et élégante en exploitant les concepts
orientés-objets

☞ au moyen du langage C++

2. Approfondir quelques notions de structuration des données
(algorithmique, généricité)

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 3 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Présentation générale du cours

Public : Cours obligatoire pour les étudiants de 2ème
semestre de la section des Sciences de la Vie.
Connaissances supposées acquises : bases de la
programmation procédurale en C++

Langue : Français
Moyens :

Concepts théoriques introduits ou complémentés
lors de cours magistraux ex-cathedra
(Mardi 1315/1415–1500)

mis en pratique, de manière guidée, lors de
séances d’exercices sur machines
(Mardi 1015–1300)

Compléments en lignes : vidéos et quizzes
(disponibles pour les 8 premières semaines).

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 4 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Couplage au MOOC (1)

MOOC d’introduction à la programmation orientée-objets en C++ :

www.coursera.org/learn/programmation-orientee-objet-cpp/

A utiliser comme au semestre passé

Matériel MOOC utilisé :
1. Vidéos
2. Quizzes
3. Devoirs (mais ne comptent pas)

☞ à considérer comme des exercices supplémentaires

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 5 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Couplage au MOOC (2)

▶ Avant le cours : visionner les vidéos, faire les quizzes et
comprendre certains exercices de niveau 0

▶ Compléments de cours : résumé et approfondissements
☞ seulement une heure en direct ou pré-enregistrés

▶ Exercices/projet : mise en pratique

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 6 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Couplage au MOOC (3)

Charge de travail :

▶ 1 heure de compléments de cours : récapitulation et
approfondissements ;

▶ 3 heures d’exercices en salle de TP : mise en pratique ;

▶ 6 heures de travail à la maison :

▶ 1 :30-1 :45 sur les vidéos de la semaine suivante

▶ 0 :15-0 :30 sur les quizzes de la semaine suivante

▶ 4 heures pour commencer à préparer la série d’exercices de la
semaine en cours, finaliser celle de la semaine passée ou
programmer le projet noté.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 7 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Notes et examens

Les épreuves de contrôle continu seront les suivantes :

▶ Examen théorique individuel, 2h

▶ Projet en binômes, environ 8 semaines

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 8 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Calcul de la note

▶ La note finale, N, est calculée comme suit :
N = NExamen ∗0.4+Nprojet ∗0.6

▶ Les notes intermédiaires ne sont pas arrondies.

▶ Les cours ICC et Programmation Orientée Objet sont
indépendants pour ce qui est de la note. La moyenne
arrondie de chaque cours est transmise au SAC à la fin de
chaque semestre.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 9 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Notes et examens
Examen

Le semestre sera clôturé par un examen écrit portant sur le
contenu du cours et les séances d’exercices.

Date :

Mardi 20 Mai

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 10 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Notes et examens
« Défense » du projet

La dernière séance de TP sera consacrée aux défenses de
projets (pas vraiment de préparation nécessaire si vous avez suivi
l’échéancier proposé)

Date :

Mardi 27 Mai

Vous présenterez :
▶ ce que vous avez fait (petite démonstration)
▶ comment vous avez procédé : choix, méthodes, organisation
▶ quelles difficultés vous avez rencontrées et comment vous les

avez traitées
▶ en conclusion : ce que vous avez retenu du projet.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 11 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Erreurs en programmation

Il existe plusieurs types d’erreurs :
➀ erreurs de syntaxe : le programme est mal écrit et le

compilateur ne comprend pas ce qui est écrit.
Erreurs relativement faciles à trouver : le compilateur signale
le problème, indiquant souvent l’endroit de l’erreur.

➁ erreurs d’implémentation : la syntaxe du programme est
correcte (il compile), mais ce que fait le programme est erroné
(par exemple une division par zéro se produit, ou une variable
n’a pas été initialisée correctement).
Ces erreurs ne se détectent qu’à l’exécution du programme,
soit par un arrêt prématuré (e.g. cas de la division par zéro),
soit par des résultats erronés (e.g. cas de la mauvaise
initialisation).

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 12 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Erreurs en programmation

Il existe plusieurs types d’erreurs :
➂ erreurs d’algorithme : l’algorithme implémenté ne fait pas ce

que l’on croit (ce qu’il devrait)
assez proche du cas précédent. Mais ici, c’est plus la
méthode globale qui est erronée, plutôt qu’une étourderie ou
un manque de précision dans une des étapes du codage de
l’algorithme.
Il existe pour ce type d’erreurs des tests formels permettant
de trouver les erreurs.
Mais ce genre de techniques est trop complexe pour être
abordé dans ce cours.

➃ erreurs de conception : ici c’est carrément l’approche du
problème qui est erronée, souvent en raison d’hypothèses
trop fortes ou non explicitées.
Elles relèvent du domaine de l’ingénierie informatique (le
« génie logiciel »), et ne seront pas traitées dans ce cours.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 13 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Erreurs en programmation

Il existe plusieurs types d’erreurs :
➀ erreurs de syntaxe
➁ erreurs d’implémentation
➂ erreurs d’algorithme
➃ erreurs de conception

Pour traiter les erreurs d’implémentation (➁) et d’algorithme (➂),
d’un point de vue pratique :

c’est-à-dire mise en œuvre de procédures de déverminage.

Comment trouver la sources des erreurs lors de l’exécution du
programme?

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 14 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Dévermineur

L’utilisation d’un « dévermineur » (« debugger » en anglais) permet
d’ausculter en détail l’exécution d’un programme, et en particulier
▶ localiser les erreurs
▶ exécuter un programme pas à pas
▶ suivre la valeur de certaines variables

☞ suivre les tutoriels donné en début de la série de la semaine
prochaine

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 15 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

En C++

➀ Pour pouvoir utiliser un dévermineur, il faut compiler avec
l’option -g
Cela indique au compilateur de rajouter des informations
supplémentaires dans le programme, utiles au dévermineur.

c++ -g -o monprogramme monprogramme.cc

➁ Il faut ensuite exécuter le programme à corriger/étudier dans
le dévermineur (ddd sur les VMs de l’EPFL ou celui intégré à
l’outil QtCreator).

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 16 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Dévérmineurs : fonctionnalités typiques

➂ On peut décider de suspendre l’exécution du programme à
des endroits précis en y plaçant des breakpoints (points
d’arrêt)

➃ Une fois le programme stoppé à un point d’arrêt, on peut
continuer à l’exécuter
▶ soit pas à pas avec la commande next qui exécute les pas de

programme au même niveau que le point d’arrêt (mais ne
« descend » pas dans les fonctions appelées)

▶ soit pas à pas avec la commande step qui exécute les pas
élémentaires de programme et donc entre dans les fonctions
appelées

▶ soit en continu jusqu’au prochain point d’arrêt avec la
commande cont

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 17 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Dévérmineurs : fonctionnalités typiques (2)

➅ On peut regarder le contenu d’une variable
▶ soit en mettant la souris dessus
▶ soit à l’aide de la commande print

qui affiche la valeur de la variable à ce moment là

▶ soit à l’aide de la commande display.
La valeur de la variable est alors affichée à chaque pas de
programme.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 18 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Gestion des erreurs

Les exceptions permettent d’anticiper les erreurs qui pourront
potentiellement se produire lors de l’utilisation d’une portion de
code.

Exemple : on veut écrire une fonction qui calcule l’inverse d’un
nombre réel quand c’est possible :

f
entrée : x
sortie : 1/x

Si x = 0
erreur

Sinon
retourner 1/x

mais que faire concrètement en cas d’erreur ?

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 19 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Gestion des erreurs (2)

➀ retourner une valeur choisie à l’avance :

double f(double x) {
if (x != 0.0) return 1.0 / x;
else

return numeric_limits<double>().max();
}

Mais cela
1. n’indique pas à l’utilisateur potentiel qu’il a fait une erreur
2. retourne de toutes façons un résultat inexact ...
3. suppose une convention arbitraire (la valeur à retourner en

cas d’erreur)

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 20 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Gestion des erreurs (3)
➁ afficher un message d’erreur

mais que retourner effectivement en cas d’erreur?...
on retombe en partie sur le cas précédent
double f(double x) {
if (x != 0.0) return 1.0 / x;
else {
cerr << "Erreur d’utilisation de f :"

<< "division par 0"
<< endl;

return numeric_limits<double>().max();
}

}

De plus, cela est très mauvais car cela produit de gros effets
de bord : modifie cerr alors que ce n’est pas du tout dans le
rôle de f

Pensez par exemple au cas où l’on veut utiliser f dans un
programme avec une interface graphique... on ne veut alors plus
utiliser cerr (mais plutôt ouvrir une fenêtre d’alerte par exemple)

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 21 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Gestion des erreurs (4)
➂ retourner un code d’erreur :

int f(double x, double& resultat) {
if (x != 0.0) {
resultat = 1.0 / x;
return PAS_D_ERREUR;

}
else return ERREUR_DIV_ZERO;

}
// PAS_D_ERREUR, ERREUR_DIV_ZERO :
// constantes definies plus haut

Cette solution est déjà beaucoup mieux car elle laisse à la
fonction qui appelle f le soin de décider quoi faire en cas
d’erreur.
Cela présente néanmoins l’inconvénient d’être assez lourd à
gérer pour finir :
▶ cas de l’appel d’appel d’appel.... ...d’appel de fonction,
▶ mais aussi écriture peu intuitive :

if (f(x,y) == PAS_D_ERREUR) //...
au lieu de
y=f(x);

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 22 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exceptions

Il existe une solution permettant de généraliser et d’assouplir cette
dernière solution : déclencher une exception

☞ mécanisme permettant de prévoir une erreur à un endroit et
de la gérer à un autre endroit

Principe :
▶ lorsque qu’une erreur a été détectée à un endroit, on la

signale en « lançant » un objet contenant toutes les
informations que l’on souhaite donner sur l’erreur
(« lancer » = créer un objet disponible pour le reste du programme)

▶ à l’endroit où l’on souhaite gérer l’erreur (au moins
partiellement), on peut « attraper » l’objet « lancé »
(« attraper » = utiliser)

▶ si un objet « lancé » n’est pas attrapé du tout, cela provoque
l’arrêt du programme : toute erreur non gérée provoque l’arrêt.

Un tel mécanisme s’appelle une exception.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 23 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exceptions (2)

Avantages de la gestion des exceptions par rapport aux codes
d’erreurs retournés par des fonctions :
▶ écriture plus facile, plus intuitive et plus lisible
▶ la propagation de l’exception aux niveaux supérieurs d’appel

(fonction appelant une fonction appelant ...) est fait
automatiquement

plus besoin de gérer obligatoirement l’erreur au niveau de la
fonction appelante

▶ une erreur peut donc se produire à n’importe quel niveau
d’appel, elle sera toujours reportée par le mécanisme de
gestion des exceptions

(Note : si une erreur peut être gérée localement, alors il faut le faire
localement et ne pas utiliser le mécanisme des exceptions.)

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 24 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Syntaxe de la gestion des exceptions

On cherche à remplir 3 tâches élémentaires :
1. signaler une erreur
2. marquer les endroits réceptifs aux erreurs
3. leur associer (à chaque endroit réceptif aux erreurs) un

moyen de gérer leurs erreurs

On a donc 3 mots-clés du langage C++ dédiés à la gestion des
exceptions :

throw indique l’erreur (i.e. « lance » l’exception)
try indique un bloc réceptif aux erreurs

catch gère les erreurs associées (i.e. les « attrape »)

Notez bien que :
▶ L’indication des erreurs (throw) et leur gestion (try/catch)

sont le plus souvent à des endroits bien séparés dans le code
▶ Chaque bloc try possède son/ses catch associé(s)

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 25 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

throw

throw est l’instruction qui signale l’erreur au reste du
programme.

Syntaxe : throw expression

l’expression peut être de tout type : c’est le résultat de son
évaluation qui est « lancé » au reste du programme pour être
« attrapé »

Exemples :throw 21; // "lance" un entier
// "lance" une string:
throw string("quelle erreur !");
struct Erreur {
int code;
string message;

};
//...
Erreur faute;
//...
faute.code = 12; faute.message = "Division par 0";
throw faute;

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 26 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

throw (2)

throw, en « lançant » une exception, interrompt le cours normal
d’exécution et :
▶ saute au bloc catch du bloc try directement supérieur (dans

la pile des appels), si il existe ;
▶ quitte le programme (« abort ») si l’exécution courante n’était

pas dans au moins un bloc try.

Exemple :
try {

...
// appel contenant un throw int
...

}
catch (int i) {
...

}
En cas d’erreur, ce code
n’est pas exécuté

En cas d’erreur,
saute ici

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 27 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

try

try (lit. « essaye ») introduit un bloc réceptif aux exceptions
lancées par des instructions, ou des fonctions appelées à
l’intérieur de ce bloc (ou même des fonctions appelées par des
fonctions appelées par des fonctions... à l’intérieur de ce bloc)

Exemple 1 :
try {
...
if (x == 0.0) throw string("valeur nulle");
//...

}

Exemple 2 :
try {

// ...
y = f(x); // f pouvant lancer une exception
// ...

}

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 28 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

catch

catch est le mot-clé introduisant un bloc dédié à la gestion
d’une ou plusieurs exceptions.

Tout bloc try doit toujours être suivi d’au moins un bloc catch
gérant les exceptions pouvant être lancées dans ce bloc try.

Si une exception est lancée mais n’est pas interceptée par le
catch correspondant, le programme s’arrête (« Aborted »).

Syntaxe :

catch (type nom) {
//...

}

intercepte toutes les exceptions de type type lancées depuis le
bloc try précédent

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 29 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple d’utilisation de catch

try {
...
if (x == 0.0) throw string("valeur nulle");
...
if (j >= 3) throw j;

}
// capture les exceptions lancees sous forme de string
catch(string const& erreur) {
cerr << "Erreur : " << erreur << endl;

}
// capture les exceptions lancees sous forme d’int
catch(int erreur) {
cerr << "Avertissement : je n’aurais pas du avoir"

<< " la valeur "
<< erreur
<< endl;

}

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 30 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

catch (flot d’exécution 1/3)

Un bloc catch n’est exécuté que si une exception de type
correspondant a été lancée depuis le bloc try correspondant.

Sinon le bloc catch est simplement ignoré.

Si un bloc catch est exécuté, le déroulement continue ensuite
normalement après ce bloc catch (ou après le dernier des blocs catch
du même bloc try lorsqu’il y en a plusieurs).

En aucun cas l’exécution ne reprend après le throw !

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 31 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

catch (flot d’exécution 2/3)

Exemple :
en cas d’erreur (lancement d’une exception) :

try {
...
// appel contenant un throw int
...

}
catch (int i) {
...
...
...

}
...

En cas d’erreur,
ce code n’est pas
exécuté

En cas d’erreur,
saute ici

puis on continue
ensuite ici.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 32 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

catch (flot d’exécution 3/3)

Exemple :
si il n’y a pas d’erreur (pas de lancement d’exception) :

try {
...
// appel contenant un throw int
...

}
catch (int i) {
...
...
...

}
...

S’il n’y a pas d’erreur, ce
code est exécuté...... puis

on
saute
ici

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 33 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

catch (Remarques)

Notes :
▶ « catch(...) » permet d’intercepter n’importe quel type

d’exceptions
mais, dans le cas où il y a plusieurs catch associés à un
même try, « catch(...) » doit être le dernier.

▶ comme pour les fonctions, on préférera passer les
exceptions de type complexe par références constantes :
catch (Erreur const& e)

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 34 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

« Relancement »

Une exception peut être partiellement traitée par un bloc catch
et attendre un traitement plus complet ultérieur (c’est-à-dire à un
niveau supérieur).

Il suffit pour cela de « relancer » l’exception au niveau du bloc
n’effectuant que le traitement partiel.
(Il faudra bien sûr pour cela que l’appel à ce bloc catch soit lui-même
dans un autre bloc try à un niveau supérieur).

Pour « relancer » une exception, il suffit simplement d’écrire
throw (i.e. sans argument)

Exemple :

catch (int erreur) {
// traitement partiel :
cerr << "Hmm... pour l’instant je ne sais pas trop "

<< "quoi faire" << endl
<< "avec l’erreur " << erreur << endl;

// relance l’exception capt’ee:
throw;

}
Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 35 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple (1/4)
#include <iostream>
#include "mesures.h"
#include "acquisition.h"
#include "plot.h"
using namespace std;

void plot_temp_inverse(Mesures const&);
double inverse(double);

int main() {
Mesures temperatures;
acquerir_temp(temperatures);
plot_temp_inverse(temperatures);
return 0;

}

void plot_temp_inverse(Mesures const& t) {
for (unsigned int i(0); i < t.size(); ++i) {
plot(inverse(t[i]));

}
}

double inverse(double x) {
return 1.0/x;

}
Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 36 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple (2/4)
...
using namespace std;

const int DIVZERO(33);

void plot_temp_inverse(Mesures const&);
double inverse(double);

int main() {
Mesures temperatures;
acquerir_temp(temperatures);
plot_temp_inverse(temperatures);
return 0;

}

void plot_temp_inverse(Mesures const& t) {
for (unsigned int i(0); i < t.size(); ++i){
plot(inverse(t[i]));

}
}

double inverse(double x) {
if (x == 0.0) throw DIVZERO;
return 1.0/x;

}
Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 37 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple (3/4)

...
int main() {
Mesures temperatures;
acquerir_temp(temperatures);
try {
plot_temp_inverse(temperatures);

}
catch (int i) {
if (i == DIVZERO) {
cerr << "Courbe des températures erronée" <<endl;

/* on fait quelque chose, par exemple refaire
* les mesures, mais à ce stade le programme
* n’est pas stoppé.
*/

}
}
return 0;

}
...

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 38 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple (4/4)
int main() {
...
try {

plot_temp_inverse(temperatures);
}
catch (int i) {

if (i == DIVZERO) {
cerr << "Courbe des températures erronée" <<endl;

// effectue ici un traitement de plus haut niveau
...

}
...
void plot_temp_inverse(Mesures const& t) {
for (unsigned int i(0); i < t.size(); ++i) {

try {
plot(inverse(t[i]));

}
catch (int j) {
/* Traiter partiellement le problème et relancer l’exception.
* Cette partie du programme peut par exemple signaler
* l’indice de la valeur erronée.
*/
cerr << "problème avec la valeur " << i << endl;
throw;

}
}

}

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 39 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple complet avec reprise (1/3)
#include <iostream>
#include "mesures.h"
#include "acquisition.h"
#include "plot.h"
using namespace std;

const int DIVZERO(33);

void plot_temp_inverse(Mesures const&);
double inverse(double);

int main()
{
Mesures temperatures;
unsigned int const MAX_ESSAIS(2);
unsigned int nb_essais(0);
bool restart(false);

do {
++nb_essais; restart=false;
acquerir_temp(temperatures);
try {
plot_temp_inverse(temperatures);

}
Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 40 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple complet avec reprise (2/3)

catch (int i) {
if (i == DIVZERO) {
if (nb_essais < MAX_ESSAIS) {

cout << "Il faut re-saisir les valeurs" << endl;
restart = true;

} else {
cout << "Il y a déjà eu au moins " << MAX_ESSAIS

<< " essais." << endl;
cout << " -> abandon" << endl;

}
} else {
cout << "Ne sais pas quoi faire -> abandon" << endl;

}
}

} while (restart);

return 0;
}

void plot_temp_inverse(Mesures const& t)
{
for (unsigned int i(0); i < t.size(); ++i) {

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 41 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple complet avec reprise (3/3)

// Exemple de traitement local partiel du problème
// (ce n’est pas obligatoire).
try {
plot(inverse(t[i]));

}
catch (int j) {
cerr << "Erreur : ";
if (j == DIVZERO) {
cerr << "la valeur " << i << " est nulle.";

} else {
cerr << "problème avec la valeur " << i;

}
cerr << endl;
throw;

}
}

}

double inverse(double x)
{
if (x == 0.0) throw DIVZERO;
return 1.0/x;

}

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 42 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exception lancée par new

new (allocation dynamique de pointeur), retourne une exception
de type bad_alloc (défini dans la bibliothèque « new ») si
l’allocation dynamique ne se passe pas correctement.

Il est donc conseillé d’écrire par exemple :

#include <new>
try {
...
ptr = new ...;
...
}

catch (std::bad_alloc const& e) {
cerr << "Erreur : plus assez de memoire !" << endl;
exit 1;

}

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 43 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Spécification des exceptions

Il est toujours bon en programmation d’être le plus explicite
possible, en particulier sur ce que fait chaque chaque
fonction/méthode.

Dans cet esprit, dans un contexte où l’on prévoit d’introduire/de
gérer des exception, il est utile d’indiquer les fonctions/méthodes
qui ne lancent pas d’exception.

Cela se fait au niveau de leur prototype en ajoutant
noexcept

derrière le prototype de la fonction.

Cela indique simplement que la fonction ne peut pas lancer
d’exception (et si elle le fait, le programme se termine en fait
immédiatement (par un appel à la fonction terminate()).

Exemple :
double f(double) noexcept;

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 44 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exceptions

throw expression; lance l’exception définie par l’expression

try { ... } introduit un bloc sensible aux exceptions

catch (type& nom) { ... } bloc de gestion de l’exception

Tout bloc try doit toujours être suivit d’un bloc catch gérant les
exceptions pouvant être lancées dans ce bloc try.

Si une exception est lancée mais n’est pas interceptée par le
catch correspondant, le programme s’arrête (« Aborted »).

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 45 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Espaces de noms

(Rappel) Portée d’un objet = région du programme où l’objet peut
être utilisé

Exemples de portées : un bloc, le corps de fonction, tout le
programme (variable globale), ...

☞ Qu’en est-il en cas de compilation séparée?

Les portées locales restent inchangées (puisqu’elles sont
« locales » par définition !)

Un espace de noms est justement un moyen de faire un
regroupement logique de divers objets (variables, fonctions, ...)

Cela permet de partager des objets tout en évitant les conflits
au niveau des noms...

...et donc de distinguer clairement deux objets portant le même
nom, mais n’étant pas dans le même « espace de noms »

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 46 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Espaces de noms (2)

Un espace de noms est simplement le nom donné à une portée :
c’est l’espace regroupant tous les noms des objets dans cette
portée.

On distingue :
▶ l’espace de noms global (qui a un nom vide) :

c’est celui qui regroupe tous les objets déclaré en dehors de
tout autre espace de noms
les variables globales appartiennent par exemple à cet
espace de noms

▶ les espaces de noms explicitement nommés

▶ les espaces de noms non nommés (ils n’ont pas de nom,
même pas un nom vide !)
Par exemple les blocs dans votre code (par exemple sous un
if)

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 47 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Définition d’un espace de noms nommé

namespace nom { ... corps de l’espace de noms ...}

Exemple :

namespace outils {
int compteur;
double moyenne;
int fonction(double x);

}

Note : un espace de noms n’est pas une structure, un type ou un
objet quelconque, c’est juste un nom de regroupement, une
« étiquette ».

L’objet compteur existe (il est déclaré) et sa portée s’appelle
outils, mais outils n’est pas un objet manipulable en soi.
C’est juste un nom.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 48 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Utilisation des objets appartenant à un
espace de noms nommé

Pour référencer explicitement un objet X d’un espace de noms
nom, on écrit : nom::X.

Exemple : ++(outils::compteur);

Si l’on veut utiliser plus librement tous les noms d’un espace de
noms :

using namespace nom;

Exemple : using namespace outils;
compteur += 3;

On peut aussi expliciter un objet particulier, ce qui évite de
spécifier l’espace de noms à chacune de ses utilisations, mais
n’autorise pas l’utilisation des autres objets du même espace de
noms.

using nom::X;
Attention ! L’utilisation des namespace ne change pas les règles de
résolutions de portée... en cas d’ambiguité, c’est toujours la variable « la plus
proche » qui est choisie. Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 49 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple complet
#include <iostream>
using namespace std; // utilisation des objets standards (std)

namespace test {
int i; // ceci sont des variables utilisables
int j; // uniquement dans la portee nommee "test"

}

int i(3); // ceci est une variable globale

int main(int argc, char* argv[])
{
int i(1); // voici une variable locale

test::i = 5; // utilisation des variables de l’espace
test::j = 6; // de noms "test"

cout << i << ’ ’ << ::i << ’ ’ << test::i << endl; // 1 3 5
// cout << j << endl; // ERREUR: j undeclared

using test::j;
cout << j << endl; // signifie test::j

// using test::i; // ERREUR: redefinition of i (i local)

using namespace test;
cout << i << endl; // c’est quand meme le i local !
cout << j << endl; // c’est test::j

}

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 50 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Un programme dans son environnement

Un programme est executé dans un environnement :
interpréteur de commandes / système d’exploitation

Il peut donc interagir avec eux (cf par exemple les flots).

Votre programme est un processus du système, une sorte de
« fonction ».

En fait, main() est une fonction (presque) comme les autres...

☞ Elle a juste la spécificité d’être toujours appelée en premier.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 51 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Valeur de retour de main()

Le prototype de main tel qu’utilisé jusqu’ici est : int main()

A quoi sert le int retourné par main?

☞ C’est le « signal » retourné au système d’exploitation par le
processus correspondant au programme.
(dépasse largement le cadre de ce cours)
choisir 0 si tout va bien, autre chose si il y a une erreur.

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 52 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Arguments de main()

Et si main() est une fonction, ...peut-elle prendre des
arguments ?

☞ oui

int main(int argc, char* argv[])

Ces arguments sont les paramètres donnés par l’environnement
(système d’exploitation, interpréteur de commandes, ...) qui
appelle la fonction main, c’est-à-dire, qui exécute le programme.

Exemple : passer une option « -v » et un fichier à un programme
monprogramme -v fichier

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 53 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Arguments de main() (2)

Dans le prototype

int main(int argc, char* argv[])

argc est un entier comptant le nombres d’arguments (+1) passés
au programme
argv est un tableau de pointeurs sur des caractères : tableau des
arguments

☞ argv[0] correspond au nom du programme.

Exemple :
monprogramme -v fichier

argc=3

argv[0] argv[1] argv[2]

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 54 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Traitement des arguments de main()

int main(int argc, char* argv[])
{
int erreur(traite_arguments(argc, argv));
if (erreur != OK) { // constante OK definie au prealable
...

}
return erreur;

}

On peut distinguer 3 types d’arguments
▶ obligatoires

e.g. un nom de fichier : rm fichier

▶ optionnels
e.g. une option d’affichage : ls -l

▶ optionnels avec arguments
e.g. changer une valeur par défaut : dvips -o masortie.ps

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 55 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple

int traite_arguments(int& nb, char* argv[])
{ int required(0); // nb d’arguments obligatoires deja traites
string argument;
const string pgm_name(argv[0]); // le nom du programme
--nb; // passe a l’argument suivant
size_t i(1);
while (nb) { // tant qu’il y a des arguments

argument = argv[i];

if (argument == "-P") // option
option_P = true;

else if (argument == "-i") { // option avec 1 argument : -i nom
option_I = true;
++i; --nb; // passe a l’argument suivant
if (!nb) { // si l’argument de l’option n’est pas la
cerr << "ERREUR: pas d’argument pour l’option -i" << endl;
return ERREUR;

} else
fait_ce_qui_faut(argv[i]); // traite l’argument de l’option

} else { // traite les arguments obligatoires
// suite ->

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 56 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Exemple (suite)

if (required >= NB_REQUIRED) {
cerr << "ERREUR: je ne comprend pas l’option " << argument

<< endl;
return ERREUR;

} else {
// arguments obligatoires
soccupe_argument_obligatoire(argument);
++required;

}
}
++i; --nb; // passe a l’argument suivant

}

if (required != NB_REQUIRED) {
// verifie qu’on a bien eu tous les arguments obligatoires
cerr << "ERREUR: il manque des arguments" << endl;
return ERREUR;

}
return OK;

}

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 57 / 58

Présentation du
cours

Notes et
examens

Gestion des
erreurs

Exceptions

Espaces de
nommage

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

Pour préparer le prochain cours

▶ Vidéos et quiz du MOOC semaine 1 :
▶ Introduction [20 :48]
▶ Classes, objets, attributs et méthodes en C++ [16 :07]
▶ public : et private : [18 :59]
▶ Encapsulation et abstraction : résumé [10 :28]
▶ Encapsulation et abstraction : étude de cas [23 :33]

☞ A échelonner sur plusieurs jours pour éviter l’« overdose »

▶ Le prochain cours :
▶ de 14h15 à 15h (résumé et compléments)

Programmation Orientée Objet – Cours 1 (15) : Gestion des erreurs & compléments – 58 / 58

	Présentation du cours
	Notes et examens
	Gestion des erreurs
	Exceptions
	Espaces de nommage
	Arguments de main

