Programmation Orientée Objet :

Gestion des erreurs
et
Divers compléments

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 1/58

Objectifs du second semestre

1. Apprendre a programmer de fagon plus concise et modulaire
mais aussi plus fiable et élégante en exploitant les concepts
orientés-objets

= au moyen du langage C++

2. Approfondir quelques notions de structuration des données
(algorithmique, généricité)

©EPFL 2024-25

Jamila Sam

& Jean-Cédric Chappelier
cpre-
cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 3/58

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Présentation du
cours

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Les acquis du premier semestre

Programmer c’est décomposer une tache a automatiser en une
séquence d’instructions (traitements) et des données

Expressions & Opérateurs
Structures de contrble
Fonctions Portée

Traitements Données
Algorithmes S.D.A.
Variables

Chaines de caractéres
Tableaux de taille fixe
Tableaux dynamiques
Structures

Pointeurs
Entrées/Sorties

Public :

Langue :
Moyens :

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 2/58

Présentation générale du cours

Cours obligatoire pour les étudiants de 2éme
semestre de la section des Sciences de la Vie.
Connaissances supposées acquises : bases de la
programmation procédurale en C++

Francais

Concepts théoriques introduits ou complémentés
lors de cours magistraux ex-cathedra
(Mardi 1315/1415—1500)

mis en pratique, de maniére guidée, lors de
séances d’exercices sur machines
(Mardi 1015—1300)

Compléments en lignes : vidéos et quizzes
(disponibles pour les 8 premiéres semaines).

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 4 /58

Présentation du
cours

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Présentation du
cours

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Couplage au MOOC (1) renene - Gouplage au MOOC (2)

MOOC d’introduction a la programmation orientée-objets en C++ :

www.coursera.org/learn/programmation-orientee-objet-cpp/ » Avant le cours : visionner les vidéos, faire les quizzes et

- , comprendre certains exercices de niveau 0
A utiliser comme au semestre passé

» Compléments de cours : résumé et approfondissements

Matériel MOOC utilisé : & seulement une heure en direct ou pré-enregistrés

1. Vidéos _ _ _ _
5 Quizzes > Exercices/projet : mise en pratique
3. Devoirs (mais ne comptent pas)

= a considérer comme des exercices supplémentaires

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

L= =~ 1=
Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 5/58 L] P' L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 6/58

Couplage au MOOC (3) Notes et examens

Notes et
examens

Charge de travail :

> 1 heure de compléments de cours : récapitulation et

approfondissements; , A : .
PP ’ Les épreuves de contrble continu seront les suivantes :

> 3 heures d’exercices en salle de TP : mise en pratique;

» 6 heures de travail a la maison : o L
» Examen théorique individuel, 2h

> 1 :30-1 :45 sur les vidéos de la semaine suivante . A .)
» Projet en bindmes, environ 8 semaines

> 0:15-0:30 sur les quizzes de la semaine suivante

> 4 heures pour commencer a préparer la série d’exercices de la
semaine en cours, finaliser celle de la semaine passée ou
programmer le projet noté.

©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

cpr-
Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 7/58 = Pi' L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 8/58

Calcul de la note Notes et examens

Notes et Notes et

examens examens Examen

» La note finale, N, est calculée comme suit :
N = Neyamen 0.4 + Nprojet x0.6
Le semestre sera cléturé par un examen écrit portant sur le

. s . contenu du cours et les séances d’exercices.
> Les notes intermédiaires ne sont pas arrondies.

Date :
» Les cours ICC et Programmation Orientée Objet sont Mardi 20 Mai
indépendants pour ce qui est de la note. La moyenne
arrondie de chaque cours est transmise au SAC a la fin de
chaque semestre.
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
cePrFL . .) EPFL B .
=iy Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 9/58 =iy Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 10/58
Notes et examens Erreurs en programmation
examens « Defense » du projet
Gestion des
erreurs
La derniére séance de TP sera consacrée aux défenses de Il existe plusieurs types d'erreurs :
projets (pas vraiment de préparation nécessaire si vous avez suivi @ erreurs de syntaxe : le programme est mal écrit et le
I'échéancier proposé) compilateur ne comprend pas ce qui est écrit.

Erreurs relativement faciles a trouver : le compilateur signale

Date : . - , : ,
le probléme, indiquant souvent I'endroit de I'erreur.
Mardi 27 Mai @ erreurs d'implémentation : la syntaxe du programme est
correcte (il compile), mais ce que fait le programme est erroné
) (par exemple une division par zéro se produit, ou une variable
Vous presenterez : n'a pas été initialisée correctement).
> ce que vous avez fait (petite démonstration) Ces erreurs ne se détectent qu’a I'exécution du programme,
> comment vous avez procédé : choix, méthodes, organisation soit par un arrét prémature (e.g. cas de la division par zéro),
e , soit par des résultats erronés (e.g. cas de la mauvaise
» quelles difficultés vous avez rencontrées et comment vous les initialisation)

avez traitées
» en conclusion : ce que vous avez retenu du projet.

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL EPFL
=i Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 11/58 (=1 ad Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 12/58

Erreurs en programmation

Gestion des

erreurs Il existe plusieurs types d’erreurs :

® erreurs d’algorithme : 'algorithme implémenté ne fait pas ce
que I'on croit (ce qu’il devrait)
assez proche du cas précédent. Mais ici, c’est plus la
méthode globale qui est erronée, plutét qu’'une étourderie ou
un manque de précision dans une des étapes du codage de
l'algorithme.
Il existe pour ce type d’erreurs des tests formels permettant
de trouver les erreurs.
Mais ce genre de techniques est trop complexe pour étre
abordé dans ce cours.

@ erreurs de conception : ici c’est carrément I'approche du
probléme qui est erronée, souvent en raison d’hypothéses
trop fortes ou non explicitées.

Elles relevent du domaine de l'ingénierie informatique (le
« génie logiciel »), et ne seront pas traitées dans ce cours.
©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

':P':L
LI Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 13 /58
Dévermineur
Gestion des
erreurs
Lutilisation d’un « dévermineur » (« debugger » en anglais) permet
d’ausculter en détail I'exécution d’'un programme, et en particulier
» localiser les erreurs
> exécuter un programme pas a pas
» suivre la valeur de certaines variables
= Ssuivre les tutoriels donné en début de la série de la semaine
prochaine
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
=PrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 15/58

Gestion des
erreurs

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Gestion des
erreurs

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Erreurs en programmation

Il existe plusieurs types d’erreurs :
@ erreurs de syntaxe
@ erreurs d’'implémentation
® erreurs d’algorithme
@ erreurs de conception

Pour traiter les erreurs d’implémentation (@) et d’algorithme (®),
d’un point de vue pratique :
c’est-a-dire mise en ceuvre de procédures de déverminage.

Comment trouver la sources des erreurs lors de I’'exécution du
programme ?

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 14 /58

En C++

@ Pour pouvoir utiliser un dévermineur, il faut compiler avec
I'option —g
Cela indigue au compilateur de rajouter des informations
supplémentaires dans le programme, utiles au dévermineur.
c++ —g —O0 monprogramme monprogramme.cc

@ |l faut ensuite exécuter le programme a corriger/étudier dans
le dévermineur (ddd sur les VMs de 'EPFL ou celui intégré a
l'outil QtCreator).

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 16 /58

Dévérmineurs : fonctionnalités typiques

Gestion des

erreurs ® On peut décider de suspendre I'exécution du programme a
des endroits précis en y plagant des breakpoints (points
d’arrét)

File Edit ¥iew Program Commands ,Stetu{ Source Data Help |

= . o . =
0:|rna1'n ;9 %@)\J@ T ea [T 1 =2
Lookup Finds: Break atch Print Display* Plot Sfiow Boiate Zet Urdiss

—

@ Une fois le programme stoppé a un point d’arrét, on peut
continuer a I'exécuter

> soit pas a pas avec la commande next qui exécute les pas de
programme au méme niveau que le point d’arrét (mais ne
« descend » pas dans les fonctions appelées)

> soit pas a pas avec la commande step qui exécute les pas
élémentaires de programme et donc entre dans les fonctions
appelées

» soit en continu jusqu’au prochain point d’arrét avec la
commande cont

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

L= P L= L
=iy Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 17 /58

Gestion des erreurs

Les exceptions permettent d’anticiper les erreurs qui pourront
Exceptions potentiellement se produire lors de I'utilisation d’'une portion de
code.

Exemple : on veut écrire une fonction qui calcule I'inverse d’'un
nombre réel quand c’est possible :

f
entrée : x
sortie : 1/x
Six=0
erreur

Sinon
retourner 1/x

mais que faire concretement en cas d’erreur ?
©EPFL 2024-25
‘;(a\rlr:‘aan—scagc‘mc Chappelier

[- P [- L
= Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 19 /58

Dévérmineurs : fonctionnalités typiques (2)

Gestion des
erreurs
® On peut regarder le contenu d’une variable
» soit en mettant la souris dessus
» soit a I'aide de la commande print
qui affiche la valeur de la variable a ce moment la
-
(ng)1print >< Y
(gdb) _;
A f2=12 .F
» soit a 'aide de la commande display.
La valeur de la variable est alors affichée a chaque pas de
programme.
L ==
(gdb) display # =Y
(gdby next —
1: x =12
V]
I &
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
-pr-
':P'-L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 18 /58
Gestion des erreurs (2)
Exceptions
@ retourner une valeur choisie a I'avance :
double f (double x) ({
if (x != 0.0) return 1.0 / x;
else
return numeric_limits<double> () .max () ;
}
Mais cela
1. n’indique pas a l'utilisateur potentiel qu’il a fait une erreur
2. retourne de toutes fagons un résultat inexact ...
3. suppose une convention arbitraire (la valeur a retourner en
cas d’erreur)
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
l-Pl-L
=rr Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 20 /58

Gestion des erreurs (3)

@ afficher un message d’erreur
mais que retourner effectivement en cas d’erreur ?...
Exceptions on retombe en partie sur le cas précédent
double f (double x) {
if (x !'= 0.0) return 1.0 / x;
else {
cerr << "Erreur d’utilisation de f :"
<< "division par 0"
<< endl;
return numeric_limits<double> () .max () ;

De plus, cela est tres mauvais car cela produit de gros effets
de bord : modifie cerr alors que ce n’est pas du tout dans le

réle de £
Pensez par exemple au cas ou I'on veut utiliser £ dans un
Sz programme avec une interface graphique... on ne veut alors plus
o Srappeter utiliser cerr (mais plutét ouvrir une fenétre d’alerte par exemple)
':P'- L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 21 /58
Exceptions

Il existe une solution permettant de généraliser et d’assouplir cette
derniére solution : déclencher une exception

Exceptions

w Mécanisme permettant de prévoir une erreur a un endroit et
de la gérer a un autre endroit

Principe :

> lorsque qu’une erreur a été détectée a un endroit, on la
signale en « lancant » un objet contenant toutes les
informations que I'on souhaite donner sur I'erreur
(« lancer » = créer un objet disponible pour le reste du programme)

> a I'endroit ou I'on souhaite gérer I'erreur (au moins
partiellement), on peut « attraper » I'objet « lancé »
(« attraper » = utiliser)

> si un objet « lancé » n’est pas attrapé du tout, cela provoque
I'arrét du programme : toute erreur non gérée provoque l'arrét.

CEPFL 202425 Un tel mécanisme s’appelle une exception.
& Jean-Cédric Chappelier

-
=i L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 23 /58

Gestion des erreurs (4)
® retourner un code d’erreur :

int f (double x, double& resultat) ({
if (x !'= 0.0) {
resultat = 1.0 / x;
return PAS_D_ERREUR;
}
else return ERREUR_DIV_ZERO;
}
// PAS_D_ERREUR, ERREUR_DIV_ZERO :
// constantes definies plus haut

Exceptions

Cette solution est déja beaucoup mieux car elle laisse a la
fonction qui appelle £ le soin de décider quoi faire en cas
d’erreur.
Cela présente néanmoins I'inconvénient d’étre assez lourd a
gérer pour finir :

» cas de I'appel d’appel d’appel.... ... d’appel de fonction,

> mais aussi écriture peu intuitive :

if (f(x,y) == PAS_D_ERREUR) //...
©EPFL 2024-25 au lieu de
Jamila Sam
& Jean-Cédric Chappelier yv=f (x);
':P':L
=iy Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 22 /58

Exceptions (2)

Avantages de la gestion des exceptions par rapport aux codes
d’erreurs retournés par des fonctions :
» écriture plus facile, plus intuitive et plus lisible
> |a propagation de I'exception aux niveaux supérieurs d’appel
(fonction appelant une fonction appelant ...) est fait
automatiquement

Exceptions

plus besoin de gérer obligatoirement I'erreur au niveau de la
fonction appelante

» une erreur peut donc se produire a n'importe quel niveau
d’appel, elle sera toujours reportée par le mécanisme de
gestion des exceptions

(Note : si une erreur peut étre gérée localement, alors il faut le faire
localement et ne pas utiliser le mécanisme des exceptions.)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

[- P [- L
(=1 ad Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 24 /58

Syntaxe de la gestion des exceptions

On cherche a remplir 3 tches élémentaires :
1. signaler une erreur
2. marquer les endroits réceptifs aux erreurs

3. leur associer (& chaque endroit réceptif aux erreurs) un
moyen de gérer leurs erreurs

Exceptions

On a donc 3 mots-clés du langage C++ dédiés a la gestion des
exceptions :

throw indique I'erreur (i.e. « lance » I'exception)
try indique un bloc réceptif aux erreurs
catch gere les erreurs associées (i.e. les « attrape »)

Notez bien que :
» Lindication des erreurs (throw) et leur gestion (t ry/catch)
sont le plus souvent a des endroits bien séparés dans le code
©EPFL 2024-25

Jamia Sam » Chaque bloc t ry posséde son/ses catch associé(s)

& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 25/58

throw (2)

throw, en « langant » une exception, interrompt le cours normal
d’exécution et :
» saute au bloc catch du bloc try directement supérieur (dans
la pile des appels), si il existe;
> quitte le programme (« abort ») si I'exécution courante n’était
pas dans au moins un bloc try.

Exceptions

Exemple :
try {

// appel contenant un throw int

En cas d'erreur,

} .
saute ici

catch (int 1)

{

En cas d’erreur, ce code
n’est pas exécuté

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cpr-
=i L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 27 /58

Exceptions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Exceptions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

throw

throw est I'instruction qui signale I’erreur au reste du
programme.

Syntaxe : throw expression

I'expression peut étre de tout type : c’est le résultat de son
évaluation qui est « lancé » au reste du programme pour étre
« attrapé »

throw 21; // "lance”" un entier
// "lance" une string:
throw string("quelle erreur !");
struct Erreur {

int code;

string message;
bi

S/

Erreur faute;

YV

faute.code = 12; faute.message = "Division par 0";

throw faute;

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 26 /58

try

try (lit. « essaye ») introduit un bloc réceptif aux exceptions
lancées par des instructions, ou des fonctions appelées a
l'intérieur de ce bloc (ou méme des fonctions appelées par des
fonctions appelées par des fonctions... a l'intérieur de ce bloc)

Exemple 1 :
try |

if (x == 0.0) throw string("valeur nulle");
S/
}

Exemple 2 :

try |
//

y = f(x); // f pouvant lancer une exception

//

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 28 /58

catch Exemple d’utilisation de catch

catch est le mot-clé introduisant un bloc dédié a la gestion try |
Exceptions d’une ou plusieurs exceptions. Erceptons e
if (x == 0.0) throw string("valeur nulle");
Tout bloc t ry doit toujours étre suivi d’au moins un bloc catch

gérant les exceptions pouvant étre lancées dans ce bloc try. if (3 >= 3) throw jJ;

}

Si une exception est lancée mais n’est pas interceptée par le // capture les exceptions lancees sous forme de string
catch correspondant, le programme s’arréte (« Aborted »). catch (string consts erreur) f{

cerr << "Erreur : " << erreur << endl;
Syntaxe :)

// capture les exceptions lancees sous forme d’int

catch (int erreur) {
catch (type nom) {

cerr << "Avertissement : je n’aurais pas du avoir"
ZanE << " la valeur "
} << erreur
intercepte toutes les exceptions de type type lancées depuis le << endl;
bloc t ry précédent }
©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
=PFL =PFL
=iy Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 29/58 = Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 30/58
') « H 3 , M
catch (flot d’execution 1/3) catch (flot d’execution 2/3)
Exceptions Exceptions Exemple .

en cas d’erreur (lancement d’'une exception) :

Un bloc catch n’est exécuté que si une exception de type

Ly z . . tr
correspondant a été lancée depuis le bloc t ry correspondant. y i

Sinon le bloc catch est simplement ignoré. // appel contenant un throw int
Si un bloc catch est exécuté, le déroulement continue ensuite , /

R .) En cas derreur, catch (int i)
normalement apres ce bloc catch (ou aprés le dernier des blocs catch ce code st pas
du méme bloc try lorsquil y en a plusieurs). exécuté

En cas d'erreur,
saute ici

{

puis on continue

En aucun cas I'exécution ne reprend apres le throw! e
}
j ensuite ici.

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

[- P [- L [- P [- L
(=1 Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 31/58 (=1 ad Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 32/58

Exceptions

... puis
on
saute
ici

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Exceptions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

catch (flot d’exécution 3/3)

Exemple :
siil N’y a pas d’erreur (pas de lancement d’exception) :

try {

// appel contenant un throw int

} e S’iln’y a pas d’erreur, ce

catch (int i) { code est exécuté...

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 33 /58

€ «Relancement » €D

Une exception peut étre partiellement traitée par un bloc catch
et attendre un traitement plus complet ultérieur (c’est-a-dire a un
niveau supérieur).

I suffit pour cela de « relancer » I'exception au niveau du bloc
n’effectuant que le traitement partiel.

(I faudra bien sir pour cela que I'appel a ce bloc catch soit lui-méme
dans un autre bloc try a un niveau supérieur).

Pour « relancer » une exception, il suffit simplement d’écrire
throw (i.e. sans argument)

Exemple :

catch (int erreur) {
// traitement partiel
cerr << "Hmm... pour 1l’instant je ne sais pas trop
<< "quoi faire" << endl

<< "avec l’erreur " << erreur << endl;
// relance 1’exception capt’ee:
throw;

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 35/58

catch (Remarques)

Exceptions
Notes :
» « catch(...) » permet d’intercepter n’importe quel type
d’exceptions
mais, dans le cas ou il y a plusieurs catch associés a un
méme try, « catch (...) » doit étre le dernier.
» €& comme pour les fonctions, on préférera passer les
exceptions de type complexe par références constantes :
catch (Erreur consté& e)
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
-pr-
':P'-L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 34 /58
Exemple (1/4)
#include <iostream>
#include "mesures.h"
#include "acquisition.h"
Exceptions #include "plot.h"
using namespace std;
void plot_temp_inverse (Mesures consté&);
double inverse (double) ;
int main () {
Mesures temperatures;
acquerir_temp (temperatures);
plot_temp_inverse (temperatures);
return O;
}
void plot_temp_inverse (Mesures consté& t) {
for (unsigned int 1(0); 1 < t.size(); ++i) {
plot (inverse (t[i]));
}
}
OEPFL 2024.25 double inverse (double x) {
;;rg:?ggmc Chappelier return 1 - O/X;
“PFL }
=rr Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 36 /58

Exemple (2/4)

using namespace std;
Exceptions const int DIVZERO (33);

void plot_temp_inverse (Mesures const&);
double inverse (double) ;

int main () {
Mesures temperatures;
acquerir_temp (temperatures);
plot_temp_inverse (temperatures);
return O;

void plot_temp_inverse (Mesures const& t) {
for (unsigned int 1i(0); 1 < t.size(); ++1){
plot (inverse (t[i]));

double inverse (double x) {
if (x == 0.0) throw DIVZERO;
return 1.0/x;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

EPFL :

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 37 /58

Exemple (4/4)

int main() {
try f
plot_temp_inverse (temperatures);
Exceptions)
catch (int i) {
if (i == DIVZERO) {
cerr << "Courbe des températures erronée" <<endl;
// effectue ici un traitement de plus haut niveau
}
void plot_temp_inverse (Mesures const& t) {
for (unsigned int 1(0); i < t.size(); ++1i) {
try {
plot (inverse (t[i]));
}
catch (int j) {
/* Traiter partiellement le probléme et relancer l’exception.
* Cette partie du programme peut par exemple signaler
* 1’indice de la valeur erronée.
*/
cerr << "probléme avec la valeur " << i << endl;
throw;
©EPFL 2024-25 }
Jamila Sam }

& Jean-Cédric Chappelier

c=PrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 39 /58

Exceptions

©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier

c=PrL

Exceptions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Exemple (3/4)

int main () {
Mesures temperatures;
acquerir_temp (temperatures);

try {

plot_temp_inverse (temperatures);
}
catch (int i) {

if (i == DIVZERO) {

cerr << "Courbe des températures erronée" <<endl;

/* on fait quelque chose, par exemple refaire
* les mesures, mais a ce stade le programme
* n’est pas stoppé.

*/

}

return 0;

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 38 /58

Exemple complet avec reprise (1/3)

#include <iostream>
#include "mesures.h"
#include "acquisition.h"
#include "plot.h"

using namespace std;

const int DIVZERO (33);

void plot_temp_inverse (Mesures consté&);
double inverse (double) ;

int main ()
{
Mesures temperatures;
unsigned int const MAX_ESSAIS (2);
unsigned int nb_essais (0);
bool restart (false);

do {
++nb_essais; restart=false;
acquerir_temp (temperatures);
try {
plot_temp_inverse (temperatures);

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 40 /58

Exemple complet avec reprise (2/3) Exemple complet avec reprise (3/3)

// Exemple de traitement local partiel du probléeme

catch (int i
(! // (ce n’est pas obligatoire).

if (1 == DIVZERO) ({

Exceptions if (nb_essais < MAX_ESSAIS) { Exceptions try { .
cout << "Il faut re-saisir les valeurs" << endl; plot (inverse (t[1]));
restart = true;) . .
} else { catch (int J) {
cout << "Il y a déja eu au moins " << MAX_ESSAIS §err'<f7"Erreur HE
<< " essais." << endl; if (j == DIVZERO) { .
cout << " —> abandon" << endl: cerr << "la valeur " << i << " est nulle.";
} ! } else {
} else { cerr << "probleéme avec la valeur " << i;
cout << "Ne sais pas quoi faire —-> abandon" << endl; }
} cerr << endl;
} throw;
} while (restart);) }
return 0; }
J double inverse (double x)
void plot_temp_inverse (Mesures consté& t) {)
{ if (x == 0.0) throw DIVZERO;
GEPFL 202425 for (unsigned int 1(0); i < t.size(); ++i) { GEPFL 2024:25 return 1.0/x;
& Jean-Cédric Chappelier & Jean-Cédric Chappelier }
EPFL Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 41 /58 EPFL Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 42 /58
€29 Exception lancée par new €& €& 11 Spécification des exceptions
Exceptions new (allocation dynamique de pointeur), retourne une exception Exceptions ! est.:)cleours bop elp programmatl?q d Etre le plius explicite
de type bad_alloc (défini dans la bibliothéque « new ») si fosst', e/ eﬁtﬁaé“cu ler sur ce que falt chaque chaque
I'allocation dynamique ne se passe pas correctement. onction/methode.
Il est donc conseillé d'écrire par exemple : Dans cet esprit, dans un contexte ou I'on prévoit d’introduire/de
’ gérer des exception, il est utile d’'indiquer les fonctions/méthodes
4include <new> qui ne lancent pas d’exception.
try | Cela se fait au niveau de leur prototype en ajoutant
. noexcept
ptr = mew ...; derriére le prototype de la fonction.
} Cela indique simplement que la fonction ne peut pas lancer
catch (std::bad_alloc conste e) d’exception (et si elle le fait, le programme se termine en fait
cerr << "Erreur : plus assez de memoire !" << endl; immédiatement (par un appel a la fonction terminate ()).
exit 1;
} Exemple :
©EPFL 2024-25 ©EPFL 2024-25 double f (double) noexcept;
Jamila Sam Jamila Sam

& Jean-Cédric Chappelier & Jean-Cédric Chappelier

[= P [= L [= P - L
Sl Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 43 /58 =re Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 44 /58

Exceptions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Espaces de
nommage

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

= [V

Exceptions

throw expression; lance I'exception définie par I'expression

try { } introduit un bloc sensible aux exceptions

catch (type& nom) { } bloc de gestion de I'exception
Tout bloc t ry doit toujours étre suivit d’'un bloc catch gérant les

exceptions pouvant étre lancées dans ce bloc try.

Si une exception est lancée mais n’est pas interceptée par le
catch correspondant, le programme s’arréte (« Aborted »).

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 45 /58

Espaces de noms (2)

Un espace de noms est simplement le nom donné a une portée :
c’est 'espace regroupant tous les noms des objets dans cette
portée.

On distingue :

> I'espace de noms global (qui @ un nom vide) :
c’est celui qui regroupe tous les objets déclaré en dehors de
tout autre espace de noms
les variables globales appartiennent par exemple a cet
espace de noms

> les espaces de noms explicitement nommeés

> les espaces de noms non nommeés (ils n’ont pas de nom,
méme pas un nom vide!)
Par exemple les blocs dans votre code (par exemple sous un
if)

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 47 /58

Espaces de
nommage

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Espaces de
nommage

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Espaces de noms

(Rappel) Portée d’un objet = région du programme ou I'objet peut
étre utilisé

Exemples de portées : un bloc, le corps de fonction, tout le
programme (variable globale), ...

i Qu’en est-il en cas de compilation séparée ?
Les portées locales restent inchangées (puisqu’elles sont
« locales » par définition!)

Un espace de noms est justement un moyen de faire un
regroupement logique de divers objets (variables, fonctions, ...)

Cela permet de partager des objets tout en évitant les conflits
au niveau des noms...

...et donc de distinguer clairement deux objets portant le méme
nom, mais n’étant pas dans le méme « espace de noms »

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 46 /58

Définition d’un espace de noms hommeé

namespace nom { . corps de l’espace de noms ...}

Exemple :

namespace outils {
int compteur;
double moyenne;
int fonction (double x);

Note : un espace de noms n’est pas une structure, un type ou un
objet quelconque, c’est juste un nom de regroupement, une
« etiquette ».

Lobjet compteur existe (il est déclaré) et sa portée s’appelle
outils, mais outils n’est pas un objet manipulable en soi.
C’est juste un nom.

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 48 /58

Utilisation des objets appartenant a un Exemple complet
espace de noms nommé #include <iostream>

using namespace std; // utilisation des objets standards (std)

Pour référencer explicitement un objet x d’'un espace de noms

namespace test {

nom, on écrit : nom: : X. int i; // ceci sont des variables utilisables
Espaces de Espaczgede int j; // uniquement dans la portee nommee "test"
nommage . nommi
Exemple : ++ (outils: :compteur) ; }
int i(3); // ceci est une variable globale
Si I'on veut utiliser plus librement tous les noms d’'un espace de) .
int main(int argc, charx argvl])
noms : {
using namespace nom; int i(1); // voici une variable locale
4
. . - test::i = 5; // utilisation d iables de 17
Exemple: using namespace outils; tzzt:j — 6 Zelnéfsnz igzsjs vartapies de foeshace
compteur += 3;
cout << i << ' 7 << ::1 << ' ' << test::i << endl; // 1 3 5
. . . L L. // cout << j << endl; // ERREUR: j undeclared
On peut aussi expliciter un objet particulier, ce qui évite de
L. s N e . . using test::j;
spemflgr I espace de noms a chacune de ses utilisations, mais cout << 5 << endl; // signifie test::j
n‘autorise pas l'utilisation des autres objets du méme espace de
noms // using test::i; // ERREUR: redefinition of i (i local)
using nom: :X; using namespace test;
i;im”{;s(Attention ! Lutilisation des namespace ne change pas les régles de ?ﬁ{g{{%‘im N zzit y ; = iiii ;; iiii ggi?fl:?eme e e
- % résolutions de portée... en cas d’ambiguité, c’est toujours la variable « /a plus T
':F proche »» qui est choisie. Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 49 /58 ':P'-L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 50 /58
Un programme dans son environnement Valeur de retour de main ()
wgmensse UN programme est executé dans un environnement : womensse L prototype de main tel qu'utilisé jusquici est : int main ()
e interpréteur de commandes / systeme d’exploitation ran .
Il peut donc interagir avec eux (cf par exemple les flots). 28 A quoi sert le int retourné par main ?
Votre programme est un processus du systéeme, une sorte de
« fonction ». ww C’est le « signal » retourné au systeme d’exploitation par le
processus correspondant au programme.
En fait, main () est une fonction (presque) comme les autres... (dépasse largement le cadre de ce cours)
w Elle a juste la spécificité d’étre toujours appelée en premier. choisir 0 si tout va bien, autre chose siil y a une erreur.
(©EPFL 2024-25 (©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier
EPFL Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 51 /58 EPFL Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 52 /58

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Arguments de main ()

Et simain () est une fonction, ...peut-elle prendre des
arguments ?

= OUi

int main(int argc, charx argvl[])
Ces arguments sont les parameétres donnés par I'environnement
(systéme d’exploitation, interpréteur de commandes, ...) qui
appelle la fonction main, c’est-a-dire, qui exécute le programme.

Exemple : passer une option « —v » et un fichier a un programme

monprogramme -v fichier

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 53 /58

Traitement des arguments de main ()

int main(int argc, charx argv[])
{
int erreur (traite_arguments (argc, argv));
if (erreur != OK) { // constante OK definie au prealable

}

return erreur;

On peut distinguer 3 types d’arguments

> obligatoires

e.g. un nom de fichier : rm fichier

> optionnels
e.g. une option d’affichage : 1s -1

» optionnels avec arguments
e.g. changer une valeur par défaut : dvips —-o masortie.ps

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 55/58

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Arguments de
main

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

c=PrL

Arguments de main () (2)

Dans le prototype
int main(int argc, charx argvl([])

argc est un entier comptant le nombres d’arguments (+1) passés
au programme

argv est un tableau de pointeurs sur des caractéres : tableau des
arguments

s argv [0] correspond au nom du programme.

Exemple :
monprogramme —v fichier
argc=3
argv|[0] argv[1l] argv[2]

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 54 /58

Exemple

int traite_arguments (int& nb, charx argv([])

{ int required(0); // nb d’arguments obligatoires deja traites
string argument;
const string pgm_name (argv(0]); // le nom du programme

--nb; // passe a 1’argument suivant
size_t 1i(1);
while (nb) { // tant qu’il y a des arguments
argument = argv[i];
if (argument == "-P") // option
option_P = true;
else if (argument == "-i") { // option avec 1 argument : -1 nom
option_I = true;
++i; —--nb; // passe a l’argument suivant

if (!nb) { // si 1’argument de 1l’option n’est pas la
cerr << "ERREUR: pas d’argument pour 1l’option —-i" << endl;
return ERREUR;
} else
fait_ce_qui_faut (argv([i]); // traite 1’argument de 1’option
} else { // traite les arguments obligatoires
// suite —>

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 56 / 58

Exemple (suite) Pour préparer le prochain cours

if (required >= NB_REQUIRED) {

cerr << "ERREUR: je ne comprend pas l’option " << argument
<< endl; » Vidéos et quiz du MOOC semaine 1
Arguments de return ERREUR; Arguments de q .
nain } else { nain > Introduction [20 :48]
// arguments obligatoires > Classes, objets, attributs et méthodes en C++ [16 :07]
soccupe_argument_obligatoire (argument) ; A .
++required; > public : et private : [18 :59]
} > Encapsulation et abstraction : résumé [10 :28]
) i ion : & :
++i; —-nb; // passe a 1’argument suivant »> Encapsulation et abstraction : étude de cas [23 :33]
} = A échelonner sur plusieurs jours pour éviter I'« overdose »
if (required != NB_REQUIRED) {
// verifie qu’on a bien eu tous les arguments obligatoires .
cerr << "ERREUR: il manque des arguments" << endl; > Le prOChaln Ccours :

return ERREUR;
}
return OK;

}

> de 14h15 a 15h (résumé et compléments)

©EPFL 2024-25 ©EPFL 2024-25
Jamila Sam Jamila Sam
& Jean-Cédric Chappelier & Jean-Cédric Chappelier

EPFL EPFL
=iy Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 57/58 (=l g Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 58/58

	Présentation du cours
	Notes et examens
	Gestion des erreurs
	Exceptions
	Espaces de nommage
	Arguments de main

