Programmation Orientée Objet :

Gestion des erreurs
et
Divers compléments

Jamila Sam

Laboratoire d’Intelligence Artificielle
Faculté 1&C

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 1/58

Les acquis du premier semestre

Programmer c’est décomposer une tache a automatiser en une
séquence d’instructions (traitements) et des données

Traitements Données
Algorithmes S.D.A.
Variables

Expressions & Opérateurs
Structures de contrble
Fonctions Portée

Chaines de caractéres
Tableaux de taille fixe
Tableaux dynamiques
Structures

Pointeurs
Entrées/Sorties

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E Pi— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 2/58

Objectifs du second semestre

1. Apprendre & programmer de fagon plus concise et modulaire
mais aussi plus fiable et élégante en exploitant les concepts
orientés-objets

= au moyen du langage C++

2. Approfondir quelques notions de structuration des données
(algorithmique, généricité)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 3/58

s Prégentation générale du cours

Public : Cours obligatoire pour les étudiants de 2éme
semestre de la section des Sciences de la Vie.
Connaissances supposées acquises : bases de la
programmation procédurale en C++

Langue : Frangais

Moyens :
Concepts théoriques introduits ou complémentés
lors de cours magistraux ex-cathedra
(Mardi 1315/1415—150)

mis en pratique, de maniére guidée, lors de
séances d’exercices sur machines
(Mardi 1015-1300)

Compléments en lignes : vidéos et quizzes
(disponibles pour les 8 premiéres semaines).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 4 /58

renainss - Gouplage au MOOC (1)

MOOC d’introduction a la programmation orientée-objets en C++ :

www.coursera.org/learn/programmation-orientee-objet—cpp/

A utiliser comme au semestre passé

Matériel MOOC utilisé :
1. Vidéos
2. Quizzes

3. Devoirs (mais ne comptent pas)
- A considérer comme des exercices supplémentaires

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 5/58

renains— Gouplage au MOOC (2)

> Avant le cours : visionner les vidéos, faire les quizzes et
comprendre certains exercices de niveau 0

» Compléments de cours : résumé et approfondissements
= Seulement une heure en direct ou pré-enregistrés

> Exercices/projet : mise en pratique

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 6/58

renainss - Gouplage au MOOC (3)

Charge de travail :

» 1 heure de compléments de cours : récapitulation et
approfondissements;;

> 3 heures d’exercices en salle de TP : mise en pratique;

» 6 heures de travail a la maison :

» 1 :30-1 :45 sur les vidéos de la semaine suivante
> 0 :15-0 :30 sur les quizzes de la semaine suivante

> 4 heures pour commencer a préparer la série d’exercices de la
semaine en cours, finaliser celle de la semaine passée ou
programmer le projet noté.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E Pi— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 7/58

Notes et examens

Notes et
examens
Les épreuves de contrdle continu seront les suivantes :

» Examen théorique individuel, 2h

» Projet en binbmes, environ 8 semaines
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
=PFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 8/58

Calcul de la note

Notes et
examens

» La note finale, N, est calculée comme suit :
N = NEexamen * 0.4+ Nprojet x0.6

> Les notes intermédiaires ne sont pas arrondies.

> Les cours ICC et Programmation Orientée Objet sont
indépendants pour ce qui est de la note. La moyenne
arrondie de chaque cours est transmise au SAC a la fin de
chaque semestre.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E Pi— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 9/58

Notes et examens
il Examen

Le semestre sera cl6turé par un examen écrit portant sur le
contenu du cours et les séances d’exercices.

Date :
Mardi 20 Mai

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 10/58

Notes et examens
ik « Défense » du projet

La derniére séance de TP sera consacrée aux défenses de
projets (pas vraiment de préparation nécessaire si vous avez suivi
I'échéancier proposé)

Date :
Mardi 27 Mai

Vous présenterez :
> ce que vous avez fait (petite démonstration)
» comment vous avez procédeé : choix, méthodes, organisation

» quelles difficultés vous avez rencontrées et comment vous les
avez traitées

» en conclusion : ce que vous avez retenu du projet.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 11/58

Erreurs en programmation

Gestion des
erreurs

Il existe plusieurs types d’erreurs :

@ erreurs de syntaxe : le programme est mal écrit et le
compilateur ne comprend pas ce qui est écrit.
Erreurs relativement faciles a trouver : le compilateur signale
le probléme, indiquant souvent I'endroit de I'erreur.

@ erreurs d'implémentation : la syntaxe du programme est
correcte (il compile), mais ce que fait le programme est erroné
(par exemple une division par zéro se produit, ou une variable
n’a pas été initialisée correctement).

Ces erreurs ne se détectent qu’a I'exécution du programme,
soit par un arrét prématuré (e.g. cas de la division par zéro),
soit par des résultats erronés (e.g. cas de la mauvaise
initialisation).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 12/58

Erreurs en programmation

Gestion des

Il existe plusieurs types d’erreurs :

® erreurs d’'algorithme : I'algorithme implémenté ne fait pas ce
que I'on croit (ce qu’il devrait)
assez proche du cas précédent. Mais ici, c’est plus la
méthode globale qui est erronée, plutét qu'une étourderie ou
un manque de précision dans une des étapes du codage de
l'algorithme.
Il existe pour ce type d’erreurs des tests formels permettant
de trouver les erreurs.
Mais ce genre de techniques est trop complexe pour étre
abordé dans ce cours.

@ erreurs de conception : ici c’est carrément I'approche du
probléeme qui est erronée, souvent en raison d’hypothéses
trop fortes ou non explicitées.

Elles relevent du domaine de I'ingénierie informatique (le
« génie logiciel »), et ne seront pas traitées dans ce cours.
©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 13 /58

Erreurs en programmation

Gestion des
erreurs

Il existe plusieurs types d’erreurs :
@ erreurs de syntaxe
@ erreurs d'implémentation
® erreurs d’'algorithme
@ erreurs de conception

Pour traiter les erreurs d’'implémentation (@) et d’algorithme (®),
d’'un point de vue pratique :
c’est-a-dire mise en ceuvre de procédures de déverminage.

Comment trouver la sources des erreurs lors de I'exécution du
programme ?

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 14 /58

Dévermineur

Gestion des
erreurs

Lutilisation d’'un « dévermineur » (« debugger » en anglais) permet
d’ausculter en détail I'exécution d’'un programme, et en particulier

> localiser les erreurs
> exécuter un programme pas a pas
» suivre la valeur de certaines variables

= Suivre les tutoriels donné en début de la série de la semaine
prochaine

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 15/58

En C++

Gestion des
erreurs

@ Pour pouvoir utiliser un dévermineur, il faut compiler avec
I'option —g
Cela indique au compilateur de rajouter des informations
supplémentaires dans le programme, utiles au dévermineur.
c+t+ —g —o monprogramme monprogramme.cc

@ Il faut ensuite exécuter le programme a corriger/étudier dans
le dévermineur (ddd sur les VMs de 'EPFL ou celui intégré a
l'outil QtCreator).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 16 /58

Dévérmineurs : fonctionnalités typiques

Gestion des

® On peut décider de suspendre I'exécution du programme a
des endroits précis en y placant des breakpoints (points
d’'arrét)

File Edit iew Program Commands /‘ibh.g Source Data Help |

- - - - o T - -y -
0| rain . ® ﬂ\@@@ A T RN B
Lookup Find=A_ Break Juatch Print Display Flot Shiowr - Botate sat - URdisp

@ Une fois le programme stoppé a un point d’arrét, on peut
continuer a I'exécuter

> soit pas a pas avec la commande next qui exécute les pas de
programme au méme niveau que le point d’arrét (mais ne
« descend » pas dans les fonctions appelées)

> soit pas a pas avec la commande step qui exécute les pas
élémentaires de programme et donc entre dans les fonctions
appelées

> soit en continu jusqu’au prochain point d’arrét avec la
commande cont

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 17 /58

Dévérmineurs : fonctionnalités typiques (2)

Gestion des
erreurs

® On peut regarder le contenu d’'une variable
> soit en mettant la souris dessus
> soit a I'aide de la commande print
qui affiche la valeur de la variable a ce moment la

(gdbl print = A
2 =12

=]
(adb3 7]
Age=12 .F

> soit a I'aide de la commande display.
La valeur de la variable est alors affichée a chaque pas de

programme.

1 s
(gdh) display = Y
(gdbl next =
10 % =12

A
.F

A

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E Pi' L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 18 /58

Gestion des erreurs

Les exceptions permettent d’anticiper les erreurs qui pourront
Exceptions potentiellement se produire lors de I'utilisation d’une portion de
code.

Exemple : on veut écrire une fonction qui calcule l'inverse d’un
nombre réel quand c’est possible :

f
entrée : x
sortie : 1/x

Six=0
erreur
Sinon
retourner 1/x

mais que faire concretement en cas d’erreur ?
©EPFL 2024-25
o Codrc Chappeler

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 19/58

Gestion des erreurs (2)

Exceptions

@ retourner une valeur choisie a I'avance :

double f (double x) {

if (x != 0.0) return 1.0 / x;
else
return numeric_limits<double> () .max () ;
}
Mais cela

1. n’indique pas a l'utilisateur potentiel qu'il a fait une erreur

2. retourne de toutes fagons un résultat inexact ...

3. suppose une convention arbitraire (la valeur a retourner en
cas d’erreur)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 20 /58

Gestion des erreurs (3)

@ afficher un message d’erreur
mais que retourner effectivement en cas d’erreur ?...
Exceptions on retombe en partie sur le cas précédent
double f (double x) {
if (x != 0.0) return 1.0 / x;
else {
cerr << "Erreur d’utilisation de £ :"
<< "division par 0"
<< endl;
return numeric_limits<double> () .max () ;

De plus, cela est trés mauvais car cela produit de gros effets
de bord : modifie cerr alors que ce n’est pas du tout dans le

role de £

Pensez par exemple au cas ou I'on veut utiliser £ dans un
cepr 202425 programme avec une interface graphique... on ne veut alors plus
§ Joan Gédric Chappelir utiliser cerr (mais plutot ouvrir une fenétre d’alerte par exemple)

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 21 /58

Gestion des erreurs (4)
® retourner un code d’erreur :

int f (double x, doubles& resultat) {

Exceptions
if (x 1= 0.0) {
resultat = 1.0 / x;
return PAS_D_ERREUR;
}
else return ERREUR_DIV_ZERO;
}
// PAS_D_ERREUR, ERREUR _DIV_ZERO :
// constantes definies plus haut
Cette solution est déja beaucoup mieux car elle laisse a la
fonction qui appelle £ le soin de décider quoi faire en cas
d’erreur.
Cela présente néanmoins l'inconvénient d’étre assez lourd a
gérer pour finir :
» cas de I'appel d’appel d’appel.... ... d’appel de fonction,
> mais aussi écriture peu intuitive :
if (f(x,y) == PAS_D_ERREUR) //...
©EPFL 2024-25 au lieu de
Jamila Sam
& Jean-Cédric Chappelier y=£f (x);

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 22 /58

Exceptions

Il existe une solution permettant de généraliser et d’assouplir cette
derniére solution : déclencher une exception

Exceptions

w Mécanisme permettant de prévoir une erreur a un endroit et
de la gérer a un autre endroit

Principe :

> lorsque qu’une erreur a été détectée a un endroit, on la
signale en « lancant » un objet contenant toutes les
informations que I'on souhaite donner sur I'erreur
(« lancer » = créer un objet disponible pour le reste du programme)

» a I'endroit ou I'on souhaite gérer I'erreur (au moins
partiellement), on peut « attraper » 'objet « lancé »
(« attraper » = utiliser)

> si un objet « lancé » n’est pas attrapé du tout, cela provoque
I'arrét du programme : toute erreur non gérée provoque l'arrét.

ceprL uze2s Un tel mécanisme s’appelle une exception.
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 23 /58

Exceptions (2)

Avantages de la gestion des exceptions par rapport aux codes
d’erreurs retournés par des fonctions :

» écriture plus facile, plus intuitive et plus lisible

> la propagation de I'exception aux niveaux supérieurs d’appel
(fonction appelant une fonction appelant ...) est fait
automatiquement

Exceptions

plus besoin de gérer obligatoirement I'erreur au niveau de la
fonction appelante

> une erreur peut donc se produire a n'importe quel niveau
d’'appel, elle sera toujours reportée par le mécanisme de
gestion des exceptions

(Note : si une erreur peut étre gérée localement, alors il faut le faire
localement et ne pas utiliser le mécanisme des exceptions.)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 24 /58

Syntaxe de la gestion des exceptions

On cherche a remplir 3 taches élémentaires :
1. signaler une erreur
2. marquer les endroits réceptifs aux erreurs

3. leur associer (a chaque endroit réceptif aux erreurs) un
moyen de gérer leurs erreurs

Exceptions

On a donc 3 mots-clés du langage C++ dédiés a la gestion des
exceptions :

throw indique 'erreur (i.e. « lance » I'exception)
try indigue un bloc réceptif aux erreurs
catch geére les erreurs associées (i.e. les « attrape »)

Notez bien que :

> Lindication des erreurs (throw) et leur gestion (try/catch)
sont le plus souvent a des endroits bien séparés dans le code
©EPFL 2024-25

Jamila Sam » Chaque bloc try possede son/ses catch associé(s)

& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 25/ 58

throw

throw est l'instruction qui signale I'erreur au reste du

programme.
Exceptions
Syntaxe : throw expression
I'expression peut étre de tout type : c’est le résultat de son
évaluation qui est « lancé » au reste du programme pour étre
« attrapé »
throw 21; // "lance" un entier
// "lance" une string:
throw string("quelle erreur !'");
struct Erreur {
int code;
string message;
}i
/)
Erreur faute;
S/
EPFL 202425 faute.code = 12; faute.message = "Division par 0";
Fan Geic Crappeier CREOW faute;
=PFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 26/ 58

throw (2)

throw, en « langant » une exception, interrompt le cours normal
Exceptions d’exécution et :

> saute au bloc catch du bloc t ry directement supérieur (dans
la pile des appels), si il existe;

> quitte le programme (« abort ») si 'exécution courante n’était
pas dans au moins un bloc try.

Exemple :
try {

// appel contenant un throw int

En cas derreur,

t ..
saute ici

catch (int 1)

{

En cas d’erreur, ce code
n'est pas exécuté

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 27 /58

try

try (lit. « essaye ») introduit un bloc réceptif aux exceptions
‘ lancées par des instructions, ou des fonctions appelées a
Eresptons lintérieur de ce bloc (ou méme des fonctions appelées par des
fonctions appelées par des fonctions... a l'intérieur de ce bloc)

Exemple 1 :
try {

if (x == 0.0) throw string("valeur nulle");

Exemple 2 :
try {
//
y = f(x); // f pouvant lancer une exception

/S

©EPFL 2024-25 }
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 28 /58

catch

catch est le mot-clé introduisant un bloc dédié a la gestion
Fxceptons d’'une ou plusieurs exceptions.
Tout bloc t ry doit toujours étre suivi d’au moins un bloc catch
gérant les exceptions pouvant étre lancées dans ce bloc try.

Si une exception est lancée mais n’est pas interceptée par le
catch correspondant, le programme s’arréte (« Aborted »).

Syntaxe :

catch (type nom) {
S/
}

intercepte toutes les exceptions de type t ype lancées depuis le
bloc t ry précédent

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 29 /58

Exemple d’utilisation de catch

try {
Exceptions L.
if (x == 0.0) throw string("valeur nulle");

if (j >= 3) throw j;

// capture les exceptions lancees sous forme de string

catch (string consté& erreur) {

cerr << "Erreur : " << erreur << endl;
}
// capture les exceptions lancees sous forme d’int
catch (int erreur) {

cerr << "Avertissement : Jje n’aurais pas du avoir"

<< " la valeur "

<< erreur
<< endl;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 30 /58

catch (flot d’exécution 1/3)

Exceptions

Un bloc catch n'est exécuté que si une exception de type
correspondant a été lancée depuis le bloc t ry correspondant.

Sinon le bloc catch est simplement ignoré.

Si un bloc catch est exécuté, le déroulement continue ensuite
normalement aprés ce bloc catch (ou aprés le dernier des blocs catch
du méme bloc try lorsqu’il y en a plusieurs).

En aucun cas I'exécution ne reprend aprés le throw!

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 31 /58

catch (flot d’exécution 2/3)

Exceptions EXempIe .
en cas d’erreur (lancement d’'une exception) :

try {

// appel contenant un throw int

En cas dereur, catch (int 1)
ce code n’est pas
exécuté

En cas d’erreur,
saute ici

{

,) puis on continue
. ensuite ici.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 32 /58

catch (flot d’exécution 3/3)

Exceptions EXempIe .
siil n’y a pas d’erreur (pas de lancement d’exception) :

try {

// appel contenant un throw int

} T i n'y a pas d'erreur, ce
... puis catch (int 1) { code est exécuté...

on
saute
ici

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 33 /58

catch (Remarques)

Exceptions
Notes :
> «catch(...) » permet d’intercepter n’importe quel type
d’exceptions
mais, dans le cas ou il y a plusieurs catch associés a un
méme try, « catch (...) » doit étre le dernier.
» €& comme pour les fonctions, on préférera passer les
exceptions de type complexe par références constantes :
catch (Erreur consté& e)
©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier
=PFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 34 /58

€4 « Relancement »

Une exception peut étre partiellement traitée par un bloc catch
et attendre un traitement plus complet ultérieur (c’est-a-dire a un

Erceptions niveau supérieur).
Il suffit pour cela de « relancer » I’exception au niveau du bloc
n’effectuant que le traitement partiel.
(I faudra bien s(r pour cela que I'appel a ce bloc catch soit lui-méme
dans un autre bloc t ry a un niveau supérieur).
Pour « relancer » une exception, il suffit simplement d’écrire
throw (i.e. sans argument)
Exemple :
catch (int erreur) {
// traitement partiel
cerr << "Hmm... pour l’instant je ne sais pas trop "
<< "quoi faire" << endl
<< M"avec l’erreur " << erreur << endl;
// relance 1’exception capt’ee:
©EPFL 2024-25
Jamila Sam throw;

& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 35/ 58

Exemple (1/4)

#include <iostream>

#include "mesures.h"

#include "acquisition.h"
Exceptions #include "plot.h"

using namespace std;

void plot_temp_inverse (Mesures const&);
double inverse (double) ;

int main() {
Mesures temperatures;
acquerir_temp (temperatures);
plot_temp_inverse (temperatures) ;
return 0;

void plot_temp_inverse (Mesures const& t) {
for (unsigned int 1(0); i < t.size(); ++1i) {
plot (inverse (t[1]));

©EPFL 2024.25 double inverse (double x) {

Jamila Sam .
& Jean-Cédric Chappelier return 1.0/x;

}
E PF L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 36 /58

Exemple (2/4)

using namespace std;
Exceptions const int DIVZERO (33);

void plot_temp_inverse (Mesures const&);
double inverse (double);

int main() |
Mesures temperatures;
acquerir_temp (temperatures);
plot_temp_inverse (temperatures) ;
return 0;

void plot_temp_inverse (Mesures const& t) {
for (unsigned int i(0); i < t.size(); ++1){
plot (inverse (t[1]));

double inverse (double x) {
OEPFL 2024-25 if (x == 0.0) throw DIVZERO;

Jamila Sam .
& Jean-Cédric Chappelier return 1.0/x;

EPFL :

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 37 /58

Exemple (3/4)

Exceptions int main() {
Mesures temperatures;
acquerir_temp (temperatures);
try {
plot_temp_inverse (temperatures);
}
catch (int i) {
if (i == DIVZERO) {
cerr << "Courbe des températures erronée" <<endl;

/* on fait quelque chose, par exemple refaire
* les mesures, mais a ce stade le programme
* n’est pas stoppé.

*/
}

return 0;

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 38 /58

Exemple (4/4)

int main() {
try {
plot_temp_inverse (temperatures);
}
catch (int 1) {
if (i == DIVZERO) {
cerr << "Courbe des températures erronée" <<endl;

Exceptions

// effectue ici un traitement de plus haut niveau
}

void plot_temp_inverse (Mesures consté& t) |
for (unsigned int i(0); 1 < t.size(); ++i) {
try {
plot (inverse (t[1]));
}
catch (int j) {
/* Traiter partiellement le probléme et relancer 1’exception.
* Cette partie du programme peut par exemple signaler
* 1’indice de la valeur erronée.
*/
cerr << "probléme avec la valeur " << i << endl;
throw;
©EPFL 2024-25 }

Jamila Sam }
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 39 /58

)

e

“+ Exemple complet avec reprise (1/3)

#include <iostream>

Gestion des .
S #include "mesures.h"
) #include "acquisition.h"
Exceptions K
#include "plot.h"
Espaces de .
nommage using namespace std;

Arguments de

const int DIVZERO (33);

void plot_temp_inverse (Mesures consté&);
double inverse (double);

int main ()
{
Mesures temperatures;
unsigned int const MAX_ESSAIS (2);
unsigned int nb_essais (0);
bool restart (false);

do {
++nb_essais; restart=false;
acquerir_temp (temperatures);
try {
©EPFL 2024-25

Jamila Sam plot_temp_inverse (temperatures);
& Jean-Cédric Chappelier }

E PF L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 40 /58

Exemple complet avec reprise (2/3)

Gestiondes catch (int 1) {
e if (i == DIVZERO) {
Exceplions if (nb_essais < MAX_ESSAIS) {
Eﬁmggc cout << "Il faut re-saisir les valeurs" << endl;
Arguments de restart = true;
} else {
cout << "Il y a déja eu au moins " << MAX_ESSAIS
<< " essais." << endl;
cout << " -> abandon" << endl;
}
} else {
cout << "Ne sais pas quoi faire -> abandon" << endl;
}

}

} while (restart);

return 0;

void plot_temp_inverse (Mesures consté& t)

{
©EPFL 2024-25 : N . .
vt for (unsigned int i(0); i < t.size(); ++1i) {
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 41/58

)

tation du

Gestion des

erreurs
Exceptions

Espaces de
nommage

Arguments de

(©EPFL 2024-25
Jamila Sam

& Jean-Cédric Chappelier

cPFL

Exemple complet avec reprise (3/3)

// Exemple de traitement local partiel du probléme
// (ce n’est pas obligatoire).
try {
plot (inverse (t[1]));
}
catch (int j) {
cerr << "Erreur : ";
if (j == DIVZERO) {
cerr << "la valeur " << 1 << " est nulle.";
} else {
cerr << "probléme avec la valeur " << i;
}
cerr << endl;
throw;

double inverse (double x)

{
if (x == 0.0) throw DIVZERO;

return 1.0/x;

}

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 42 /58

€zd Exception lancée par new

Exceplons new (allocation dynamique de pointeur), retourne une exception
de type bad_alloc (défini dans la bibliotheque « new ») si
I'allocation dynamique ne se passe pas correctement.

Il est donc conseillé d’écrire par exemple :

#include <new>
try {

ptr = new ...;
}
catch (std::bad_alloc consts e)

cerr << "Erreur : plus assez de memoire !" << endl;
exit 1;

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 43 /58

Exceptions

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Il est toujours bon en programmation d’étre le plus explicite
possible, en particulier sur ce que fait chaque chaque
fonction/méthode.

Dans cet esprit, dans un contexte ou I'on prévoit d’introduire/de
gérer des exception, il est utile d’'indiquer les fonctions/méthodes
qui ne lancent pas d’exception.

Cela se fait au niveau de leur prototype en ajoutant
noexcept
derriere le prototype de la fonction.

Cela indique simplement que la fonction ne peut pas lancer
d’exception (et si elle le fait, le programme se termine en fait
immeédiatement (par un appel a la fonction terminate ()).

Exemple :
double f (double) noexcept;

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 44 /58

g; Exceptions \/

Exceptions

throw expression; lance I'exception définie par I'expression
try { ... } introduit un bloc sensible aux exceptions
catch (type& nom) { ... } blocde gestion de I'exception

Tout bloc t ry doit toujours étre suivit d’un bloc catch gérant les
exceptions pouvant étre lancées dans ce bloc t ry.

Si une exception est lancée mais n’est pas interceptée par le
catch correspondant, le programme s’arréte (« Aborted »).

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 45/58

Espaces de noms

(Rappel) Portée d'un objet = région du programme ou l'objet peut
étre utilisé
Espaces de

nommage Exemples de portées : un bloc, le corps de fonction, tout le
programme (variable globale), ...

= Qu’en est-il en cas de compilation séparée ?

Les portées locales restent inchangées (puisqu’elles sont
« locales » par définition!)

Un espace de noms est justement un moyen de faire un
regroupement logique de divers objets (variables, fonctions, ...)

Cela permet de partager des objets tout en évitant les conflits
au niveau des noms...

...et donc de distinguer clairement deux objets portant le méme
nom, mais n’étant pas dans le méme « espace de noms »

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 46 /58

Espaces de nhoms (2)

Un espace de noms est simplement le nom donné a une portée :
c’est I'espace regroupant tous les noms des objets dans cette
Espaces de portée

nommage

On distingue :
» I'espace de noms global (qui a un nom vide) :
c’est celui qui regroupe tous les objets déclaré en dehors de
tout autre espace de noms
les variables globales appartiennent par exemple a cet
espace de noms

> les espaces de noms explicitement nommés

> les espaces de noms non nommeés (ils n'ont pas de nom,
méme pas un nom vide)
Par exemple les blocs dans votre code (par exemple sous un
if)
©EPFL 2024-25

Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 47 /58

Définition d’un espace de noms hommeé

namespace nom { ... corps de l’espace de noms ...}

Exemple :

Espaces de
nommage

namespace outils {
int compteur;
double moyenne;
int fonction (double x);

Note : un espace de noms n’est pas une structure, un type ou un
objet quelconque, c’est juste un nom de regroupement, une
« étiquette ».

Lobjet compteur existe (il est déclaré) et sa portée s’appelle
outils, mais outils n'est pas un objet manipulable en soi.
C’est juste un nom.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E Pi' L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 48 /58

Utilisation des objets appartenant a un
espace de noms hommeé

Pour référencer explicitement un objet x d’'un espace de noms
nom, on écrit : nom: : X.
Espaces de

nommage

Exemple : ++ (outils::compteur) ;

Si I'on veut utiliser plus librement tous les noms d’un espace de
noms :
using namespace nom,

Exemple : using namespace outils;
compteur += 3;

On peut aussi expliciter un objet particulier, ce qui évite de
spécifier 'espace de noms a chacune de ses utilisations, mais
n’autorise pas I'utilisation des autres objets du méme espace de
noms.

using nom: :X;

GEPFLL Attention ! Lutilisation des namespace ne change pas les régles de
e % résolutions de portée... en cas d’ambiguité, c’est toujours la variable « /a plus

EF DfOChe s QUi est choisie. Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 49 /58

Exemple complet

#include <iostream>
using namespace std; // utilisation des objets standards (std)

namespace test {

int i; // ceci sont des variables utilisables
Espaces de int j; // uniquement dans la portee nommee "test"
nommage)
int 1(3); // ceci est une variable globale
int main(int argc, charx argv[])
{
int i(1l); // voici une variable locale
test: = 5; // utilisation des variables de 1’espace
test::J = 6; // de noms "test"
cout << i << / 7 << ::i << ' ' << test::i << endl; // 1 35
// cout << j << endl; // ERREUR: j undeclared
using test: ;
cout << j << endl; // signifie test::j
// using test::i; // ERREUR: redefinition of 1 (i local)
using namespace test;
OEPFL 202425 cout << i << endl; // c’est quand meme le i local !
Jamila Sam cout << j << endl; // c’est test::j

& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 50 /58

Un programme dans son environnement

Arguments de Un programme est executé dans un environnement :
interpréteur de commandes / systeme d’exploitation
Il peut donc interagir avec eux (cf par exemple les flots).

Votre programme est un processus du systéme, une sorte de
« fonction ».

En fait, main () est une fonction (presque) comme les autres...
wr Elle a juste la spécificité d’étre toujours appelée en premier.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 51 /58

Valeur de retour de main ()

main

Arguments de Le prototype de main tel qu'utilisé jusqu’ici est : int main ()

A quoi sert le int retourné par main?

= C’est le « signal » retourné au systeme d’exploitation par le
processus correspondant au programme.
(dépasse largement le cadre de ce cours)
choisir 0 si tout va bien, autre chose si il y a une erreur.

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 52 /58

Arguments de main ()

Et simain () estune fonction, ...peut-elle prendre des
arguments ?

Arguments de
main

= OUi

int main(int argc, charx argv[])

Ces arguments sont les parametres donnés par I'environnement
(systéme d’exploitation, interpréteur de commandes, ...) qui
appelle la fonction main, c’est-a-dire, qui exécute le programme.

Exemple : passer une option « —v » et un fichier a un programme

monprogramme -v fichier

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 53 /58

Arguments de main () (2)

Dans le prototype

int main(int argc, char* argvl[])

Arguments de

argc est un entier comptant le nombres d’arguments (+1) passés
au programme
argv est un tableau de pointeurs sur des caracteres : tableau des
arguments

iz argv [0] correspond au hom du programme.

Exemple :
monprogramme —v fichier
argc=3
argv|[0] argv([1l] argv([2]

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

-
E P'— L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 54 /58

Traitement des arguments de main ()

int main(int argc, charx argv[])
{
int erreur (traite_arguments (argc, argv));
if (erreur != OK) { // constante OK definie au prealable

Arguments de
main }

return erreur;

On peut distinguer 3 types d’arguments

> obligatoires
e.g. un nom de fichier : rm fichier

> optionnels
e.g. une option d’affichage : 1s -1

> optionnels avec arguments
e.g. changer une valeur par défaut : dvips -o masortie.ps

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 55 /58

Exemple

int traite_arguments (int& nb, charx argv[])

{ int required(0); // nb d’arguments obligatoires deja traites
string argument;
const string pgm_name (argv[0]); // le nom du programme
Arguments de —-nb; // passe a l’argument suivant
main size t i(1);
while (nb) { // tant qu’il y a des arguments
argument = argv([i];
if (argument == "-P") // option
option_P = true;
else if (argument == "-i") { // option avec 1 argument : -i nom
option_I = true;
++i; --nb; // passe a l’argument suivant

if (!nb) { // si 1’argument de l’option n’est pas la
cerr << "ERREUR: pas d’argument pour 1l’option -i" << endl;
return ERREUR;
} else
fait_ce_qui_faut (argv([il); // traite 1’argument de 1’option
} else { // traite les arguments obligatoires
// suite ->

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPFL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 56 /58

Exemple (suite)

if (required >= NB_REQUIRED) {
cerr << "ERREUR: Jje ne comprend pas l’option " << argument
<< endl;
Arguments de return ERREUR;
main } else {
// arguments obligatoires
soccupe_argument_obligatoire (argument) ;
++required;

}

++i; --nb; // passe a l’argument suivant

if (required != NB_REQUIRED) ({
// verifie qu’on a bien eu tous les arguments obligatoires
cerr << "ERREUR: il manque des arguments" << endl;
return ERREUR;

}

return OK;

(©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

E PF L Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 57 /58

Pour préparer le prochain cours

> Vidéos et quiz du MOOC semaine 1
prauments ce > Introduction [20 :48]
Classes, objets, attributs et méthodes en C++ [16 :07]
public : et private : [18 :59]
Encapsulation et abstraction : résumé [10 :28]
Encapsulation et abstraction : étude de cas [23 :33]

vvyy

= A échelonner sur plusieurs jours pour éviter I'« overdose »

» Le prochain cours :
»> de 14h15 a 15h (résumé et compléments)

©EPFL 2024-25
Jamila Sam
& Jean-Cédric Chappelier

cPrL

Programmation Orientée Objet — Cours 1 (15) : Gestion des erreurs & compléments — 58 / 58

	Présentation du cours
	Notes et examens
	Gestion des erreurs
	Exceptions
	Espaces de nommage
	Arguments de main

