Floating-Point from ThreePerspectives
An Integrative Paper

DaisyErin Parker
April 23,2001

1 Intr oduction
This papersuneys thefollowing threesubjectpaperdrom thefield of computerscience.

o William Kahans MathematicaNrittenin Sand[4] considerseveraldevicesusedwidely in the early
1980sfor numericalcomputation Kahanexaminesthetrendof increasinglycomplicatedcandmathe-
maticallydensecircuitry in the silicon chipsof thesedevicesandhow it impactstheendusers.

e CharlesFarnums Compiler Supportfor Floating-pointComputation[2] stresseshe importanceof
generatingoredictablemachine-lgel floating-pointoperationdrom high-level languagesourcecode
anddiscussesomepitfalls commonto pastcompilers.

¢ JohnatharRichardShevchuk’s Rolust AdaptiveFloating-pointGeometricPredicateq9] introduces
fastimplementation®f four widely-usedgeometricpredicates.Theimplementatiortechniquegain
speedoy exploiting featuresof the predicateandhandlingfloating-pointvaluesefficiently.

Floating-pointarithmeticis a threadcommonto all threeof thesesubjectpapers Eachpaperaddresses
someof theissueoftenposedvy floating-pointrepresentatioandarithmetic:theexactnes®f floating-point
numbersthe executiontime requiredby floating-pointoperationsandthedifficulty of developingfloating-
point programs. This integrative paperemphasizesuchfloating-pointissuesat the levels of hardware,
compiler andsoftware.

Theremaindeof this paperis structuredasfollows. Section2 reviews backgroundnaterialon floating-
point representatioandarithmetic. Section3 discusseshe precisionof floating-pointhumbers.Section4
considerghe relationshipbetweerthe speedof floating-pointoperationsandthe accurag of their results.
Section5 examinesthe developmentof floating-pointcode. Section6 presentshe IEEE Standardr54 for
Binary Floating-PointArithmetic andconclusions.

2 Background

Thissectionprovidessomebackgroundnformationonfloating-pointnotationthatwill beusefulthroughout
theremainderof the paper

2.1 Purposeof floating-point representation

Beforethe useof floating-pointrepresentatiobecamepopularin the mid-1950smostcomputeremploed
afixed-pointrepresentatiofor numbers.As the namefixed-pointimplies, the radix point, which senesas
the boundarybetweenthe integer portionandfractionalportion of a digit string, is fixed for every number
representedRepresenting larger rangeof numbersn fixed-pointnotationrequiresincreasingthe length
of thedigit string or scalinglarge numbersinto the existing range. Floating-pointnotationevolved from a
needto represent largerrangeof numberghanfixed-pointnotationafforded[1].

2.2 Representationof floating-point numbers

Thefloating-pointrepresentationf a numberX consistof four parts. A numberX hasthe magnitudeof
its basenumberraisedto its exponentand multiplied by its significand The sign bit of X representshe
signof its magnitude. _

X = bas&Ponenty significandx (—1)S'9"

The value of base(typically 2) is implicit in the floating-pointhardware. Usually a biasedexponentis

stored. The biasedexponentis the resultof addinga quantityequalto half of the exponents rangeto the

true exponent(e.g., with 28 possibleexponentvaluesanda true exponentof -74, thenthe biasedexponent
is %(256) — 74 = 34). Useof abiasedexponentsimplifiesthe comparisorof two floating-pointnumbers,
by corvertingall exponentvaluesto positve integers.It alsodefinesauniquezerorepresentatiorassigning
a zerosignificandandthe mostnegative exponentin biased-gponentform to representhe floating-point
valueof zero.Thebit-representationf afloating-pointnumbertypically takeson thefollowing form,

sign | biased-exponent significand
0 1 e e+l e+s

wherethebiasedexponents representedsinge bits, andthe significandusings bits[3, 7].

As the previous paragraphdescribest, the floating-pointrepresentationf a numberis not uniqgue One
cancertainly conceve of multiple waysto representhe samenumber(e.g., 102 x 1 x (=1)! = —100 =
1072 x 10000 x (—1)'). Thereforeratherthanallow redundanfloating-pointrepresentationsiormalization
of the significanddefinesa uniqueexponent.Normalizationmovesthe radix point of the significands digit
string to the positionjust after the mostsignificantnonzerodigit, and updateshe exponentaccordingly
Normalizationhastwo desirablesideeffects: it preseresthemaximumprecisionallowedin therepresented
number andit ensureghat every numberrepresentedavill have equalprecision. Precisionmeasureshe
exactnes®f anumber

Floating-pointrepresentations not closed To exhibit closurewith respectto an operation,ary two
operandsxactlyrepresentablim floating-pointformatmustproducearesultexactlyrepresentablim floating-
pointformat. While therationalnumbershave closurefor addition,subtractionmultiplicationanddivision
(exceptby zero),floating-pointhumbersertainlydo not. Therearetwo reasonshatafloating-pointhumber
may not beexactly representable— the valueof its significandmay not be representableith the precision
allowed, or the valueof its exponentmay notfit in range[1].

2.3 Floating-point arithmetic

Floating-pointarithmeticapproximateshe arithmeticof realnumberslt is morecomplicatedhana simple
addition, subtraction,multiplication, or division of two integers. To perform floating-pointaddition or
subtraction,one mustadjustthe operandwith the smallerexponentto matchthe larger exponentbefore
addingor subtractinghe significands.To performfloating-pointmultiplication,onemustaddtheexponents
of the operandsand multiply their significands.To performfloating-pointdivision, one mustsubtractthe
exponentof the divisor from the exponentof the dividend and divide the significandsappropriately At
the very least,following theseproceduress necessaryalreadymakingfloating-pointarithmeticexpensve
comparedo integerarithmetic.

Moreover, several otherfloating-pointissuesarelikely to ariseandrequireresolution. Thefirst issue
is normalization(seeSection2.2). If anarithmeticresulthasmorethanonenonzerodigit beforethe radix
point, it is not in normalizedform. Suchresultsneedan extra normalizationstep. The secondissueis
overflow Overflow occurswhentheexactresultof anoperatiorhasanabsolutevaluelargerthan Nmax, the
largestfinite numbemrepresentablm floating-pointformat. Typically, situationsof overflow areresoledby
settingtheresultto +=Nmax or interrupting/terminanbg execution. Thethird issueis underflow Underflov
occurswhenthe exactresultof anoperationhasmagnituddessthanthe smallestnumberrepresentablan
floating-pointformat. Usually situationsof underflav areresohed by settingthe resultto zero. Thethird
issueis unrepresentableumbers.Somearithmeticresultssimply arenot exactly representabla floating-
pointformat,androundingsucha resultresohesthis issue. The roundingprocesschooses representable

floating-pointneighborof a numberunrepresentable floating-pointformat. Most machineshave several
modesof rounding,andeachmodehasa differentrule for determiningwhich neighborto choose.These
floating-pointissuedurthercomplicatethe arithmeticandaddto its expensd1, 7].

2.4 Theinherent problem

Thereis a greatchallengeinherentto the taskof usinga machineto represenandoperateon numbers.A
finite amountof discretevaluessimply cannotmodela densesystemof realnumbersaccurately Kahan[4]
recognizeshatsomeamountof erroris inevitable.

So,uncompromisingadherencéo the mostrigorousrulesfor approximatearithmeticwill not
protecta computerfrom unpleasansurprises Apparentlythe approximatiorof the continuum
by adiscretesetmustintroducesomeirreduciblequantumof noiseinto mathematicathought,
aswell asinto computedesults,andwe don't know how big thatquantumis.

Therefore the true challengeof floating-pointrepresentationgr ary othersystemfor approximatingreal
numbersjs how to containa smallamountof unavoidablenoiseandrestrainfrom inducinglarger, unnec-
essaryerror

2.5 Levelsof abstraction

Blaauw and Brooks [1] describefloating-pointnotationas an abstraction, Floating point is one of the

first successfuktepstoward a higherlevel language. .. The userthinks in termsof numbersnot of their

representatioris. To the programmera floating-pointvalueis just a numbey asan integer valueis just a

number In software, programminglanguayes provide one or more datatypesfor floating-pointnumbers
andoverloadedoperatorson the numbersaccordingto the datatypesof the operandsThis eliminatesthe

burdenonthe programmeto addnumberf onedatatypedifferentlythannumberof a differentdatatype.

Thecompilerhastheresponsibilityof determiningvhetheradditionmeansntegeradditionor floating-point
addition,aswell asatwhatprecisionto performfloating-pointaddition. Yeteventhecompilerdoesnothave

the onusof manipulatingthe bit-representatiaof sign,exponentandsignificand.It leavesthesedetailsto

hardware. Abstractingfloating-pointrepresentatioat eachof thesdevelshasimplicationsontheprecision
of floating-pointnumbers(Section3), the relationshipbetweenthe speedof a floating-pointprogramand

theaccuray of its results(Sectiond4), andthe easeof developingfloating-pointprogramgSections).

3 Precision

Precisionof a numberindicatesthe exactnesf the quantity which is often expressedyy the numberof

significantdigits. A realnumberhasno limit on the significantdigits allowed, andthus,it will alwaysbe

exact. A machinenumberhaslimited precisionandasaresult,it maybeonly anapproximatiorof thevalue

it intendsto representln particular limiting the precisionof a floating-pointnumberaffectsthe exactness
of its significand.Giventhatwe mustacceptsomeinaccurag in floating-pointrepresentatiodueto finite

precisiontwo questionsarise:

1. How muchprecisionshouldafloating-pointformatallow?

2. If morethanoneprecisionis presentn thesamecomputationhow shouldthey beallowedto interact?

3.1 Defining precisionin hardware

Typically, amachineoffersatleasttwo typesof precision.It usesanormalprecisionfor theinitial operands
andthefinal resultsof arithmeticoperationsanda long precisionfor the intermediateesultsof arithmetic

subroutinegcompositionof several arithmeticoperations) As discussegbreviously, thefloating-pointrep-

resentatiorof a numberis potentiallyanapproximatiorof its actualvalue. In anarithmeticsubroutinghat

requiresseveralintermediataesults theapproximationcancompounduntil theaccurag of thefinal result

hasbeenseriouslycompromised Allowing long precisionfor intermediateesultscanhelp preventsucha

situation.Considerthefollowing (contrived) examplein decimalarithmetic.

Example 1 Letnormalprecisionbe4 digitsandletlongprecisionbe6 digits. Computex: =a* b* ¢, where
a=0. 0040, b=0. 0120 andc=100. 0.

Intermediataesults Intermediataesults

‘ have normalprecision have long precision

tenp: =a*b t enp: =0. 0000 tenp:=0.0000 48
X: =tenp*c x: =0. 0000 x: =0. 0048

The computatiorrequireslong precisionat the intermediatestepto ensuregthe sameaccurayg astheresult
of anormalarithmeticoperation.

Machinearchitecturesisuallyresene long precisionsfor register locations(but they may be foundin
othermemorylocations,aswell). The registersmale up a small setof memorydevotedto temporarily
containingoperandsndresults.Registersarequickly addressablandcloseto the processor

Kahan[4, pages9-10] citesthe caseof digits being droppedprematurelyfrom the right-handside of
aregisterresidentvalueasthe mostcommonaberratiorin floating-pointarithmetic. Insufficient precision
causeghis aberrationandin the presencef suchdisparity arithmeticpropertiesmay not seemto hold.
Kahanprovidesexampleson variouscalculatorsvheremultiplicationis not commutatve or monotonicand
the identity propertyfails. It is importantto realizethat this aberrationcanleadto unexpectedresultson
one machine;however, realizing that the phenomenorwill vary acrossmachiness far more important.
Certainly on two machineghatretaina differentnumberof significantdigits the computedresultof the
samearithmeticoperationmaydiffer.

It is difficult to know how much precisionis enough. The numberof significantdigits necessaryor
onecomputatiorwill notbeadequatdor another In fact, Kahan[4] mentionsseveralcircumstanceshere
keepingary reasonabl@umberof significantdigits cannotpreventinaccuracieshataredestinedo occur
Of coursegreaterprecisioncostsmorecomputatiortime, sohardwaredesignersnustconsidetthetrade-of
carefully Hardwaredesignershouldalsotake carein determininghowv mary morebitsarein long precision
thanin normalprecision.

3.2 Compiler evaluation of mixed precision

Many languagesupportmultiple precisionsassociatinga datatype with each. The datatype of a value
indicateshov mary bits its representatiomllows. For illustration, we will considersingle precisionand
doubleprecision wheredoubleprecisionhastwice asmary digits assingle. Most languagesnclude at
leastsingleanddoubleprecisions despitethe fact that their target machinesmay be limited to a different
setof precisions Sincea sourcdanguageabstractshetargethardware,having bothlanguageandhardware
supportthe sameprecisionds notnecessaryA compilermapssourcecodeto machinenstructionsfor the
talget hardware. However, mostlanguagestandardsio not specify the exact semanticsof floating-point
operationssincefloating-pointhardware systemsanvary widely. As aresult,thereis alot of freedomfor

the compilerwriter to determinethe machine-lgel instructionsgeneratedrom source-lgel floating-point
operations.

Farnum[2] suggestshatcompilerwriters oftenalusesuchfreedom offering the caseof mappingmore
thanonesource-languaggrecisionto the samemachineprecision.Promotingall singleprecisionvariables
to double precisionmay seemharmlessbut it could be the casethat the programdependson a double
precisionvariablehaving twice the precisionof a single precisionvariable(e.g., the productof two single
precisionvariablesis exactly representablen doubleprecision). Unlessthe taget machinesupportsonly
oneprecisionevenreachinghis situationdemonstratean undesirableompiler

Farnum[2] alsopresentsheproblemof multiple precisionsn asinglestatementConsidethefollowing
example,whichis notlanguage-specific.

Example 2 Lets denoteasingleprecisionvariableandlet d denotea doubleprecisionvariable. Then,the
statement: =d+s* s includesbothsingleanddoubleprecisions.

The difficulty with Example2 is decidingat what precisionto evaluatethe subexpressions*s. As be-
fore, the compilerwriter hasthe freedomto malke this determination.Farnumcautionsthatthe choicebe
consideredarefully anddiscusseshefollowing alternatves.

Strict evaluation usesa precisiononly aslarge asthe largestoperand(evaluatings* s with single pre-
cision). In Example2, the error inducedby roundings* s to single precisionwill taint the extra
precisionof d.

Widestavailable usesthewidestprecisionavailable (evaluatings* s with doubleprecision).It is difficult
to anticipatewhenthe extra precisionwill be worth the increaseccomputatiortime, asit happengo
befor Example2. In somecasesthe expensewill bewasted.

Widest needed assigngrecisionssia anexpressiortree(alsoevaluatings* s with doubleprecision).Ten-
tative precisionsareassignedn abottom-uptraversalusingstrictevaluation. Then,atop-dovn traver
salassignasubexpressiorthewider of its tentatve precisionandtheprecisionexpectedy its parent.
Althoughthis strat@y is notassimpleasthe othertwo alternatvesandrequiresmoreeffort from the
compilerwriter, Farnumpreferswidestneededprecisionbecauset retainsthe usefulnesf over
loadedoperatorsvithout wastingextra computation.

Of course,a programmeicanforce the compilerto make the appropriatedecisionsby employing explicit
type conversions put this leadsto increasegrogrammeeffort andclutteredcode(seeSection5.2).

3.3 Arbitrary precisionin software

It is possiblethat the precisionssupportedby languageand machineare not sufficient to meetan applica-
tion’s needs Softwarelibrariescanprovide theillusion of extendedprecision by mappingsoftware-created
datatypesto thoseof language/machingrecisions. Shevchuk[9] computedloating-pointgeometrigpred-
icatesusingarbitrary precision which allows the representationf numberswvhoseprecisionsurpassethe
usuallimits.

In particular Shavchuk usesmultiple-termformatfor storingnumbersof arbitraryprecision.Multiple-
term format representsax numberas a sum of ordinary floating-pointnumbers,eachwith its own sign,
exponentandsignificand.An arbitraryprecisionvaluez is expresse@sanexpansion: = ,+. . .+zs+z1,
whereeachz; is afloating-pointvalue. For Shevchuk’s application,heimposessomeadditionalstructure
on the expansionby requiring that it be nonoverlappingand orderedby magnitude. Two floating-point
valuesqualify asnonoverlappingif the leastsignificantnonzerabit of oneis moresignificantthanthe most

significantnonzerobit of the other(assuminghasetwo). For suchanexpansionz, z,, is aneasybut rough
approximatiorof z, andthe signof z is simply thesignof z,, (Sectiond4.3discussesvhy thisis desirable).
Supposehateachz;’s significandis limited to 6 digits of precision.A numberz = 1010.11011015, which
requiresll digits for exact representationganbe storedasz = z9 + z; = 1010.115 + 0.0001101, =
1010.11012. Shevchukalsoprovidesalgorithmsfor the additionandmultiplication of expansions.

The multiple-termformat, and arbitrary arithmeticin general,is a nice option, but it hasa downside.
It givesthe writer of a software library muchflexibility in representingand operatingon numbersof the
precisionthatshedesireshowever, it alsoburdensthe library-writer, by forcing herto considerthe details
that are often left to hardware and compilers. The readability portability, and developmentspeedof the
library’s codesuffersasaresult.

4 Speedvs. Accuracy

The greatexpenseof floating-pointrepresentatioandarithmeticcannotbeignored. At aminimum, opera-
tionsin floating-pointarithmeticrequiremorework thansimply adding,subtractingmultiplying or dividing
two integers. Of course,it is possibleto pipeline suchwork, an implementatiortechniquethat overlaps
the executionof multiple instructions. However, handlingexceptionalcases)ik e overflov/underflav and
rounding(seeSection2.3),canconsumesvenmaoreexecutiontime. An increasen the numberof bitsto be
manipulatedsayfor greatemprecision,alsoincreasegxecutiontime.

In aword, it is the accuiacy of a floating-pointnumberthatis so expensve. Floating-pointoperations
cancertainlygainspeedf they take shortcutsn exception-handlingand/ordesirefewer digits of precision.
It canalso be efficient to optimize algorithms,which may reorderfragile floating-pointoperations. Of
course this compromiseshe correctnessf the result. Are thereapplicationsn which a fastbut possibly
inexact solutionis moreacceptablghana slow but correctsolution? Speedfor accurag is animportant
trade-of, andits applicability shouldbe examinedat eachlevel thatabstractgloating-pointarithmetic.

4.1 A simple goalfor floating-point arithmetic in hardware

Kahan[4] proposesa simple goal for ary operationof floating-pointarithmetic: Keepthe error strictly
smallerthanoneunit in the last place (ulp). The goalrequiresevery floating-pointresultto be correctup
to the leastsignificantdigit. However, describingthe goalassimpleis misleadingandKahanquickly says
s0. It is aneasyway of specifyingthe accurag of results,but difficult to enforce.Often, keepingthe error
below oneulp requiresgreatemrecisionfor intermediatecalculationg(recall Section3.1). Carryingmore
andmoredigits slows computationandquickly becomesmpractical.

Moreover, Kahans goalaccomplishesessthanonewould hope. This provision guaranteeseitherthe
sign-symmetnyof sin(z) = — sin(—z) nor the monotonicityof 1/z [4]. For somepersistinginaccuracies,
achieving this goalis practicallyimpossible.Is the merepossibility of enhancingheaccurag of afloating-
point resultworth the penaltyin executiontime? The answeris yesandno. Extendingthe precisionof
intermediatecalculationsbenefitscomputation but recognizingthe point of diminishingreturnsis crucial.
A limit existsbeyondwhichthegainsfrom carryingmoredigits aresparseandthey cannotoffsetthe extra
expense.

4.2 Optimizing compilers

An optimizing compiler not only translatessourcecodeinto machineinstructions,but also structureshe
machineinstructionsin a way that encouragegfficient computation.Ideally, the compilershouldensure
that the processorconstantlydoesusefuland non-redundantvork, which involvesthe rearrangemerand

elimination of somemachineinstructions. Farnum[2] warnsagainstsomecommonoptimizationsin the
presencef floating-pointarithmeticandassertshatunderno circumstanceshouldtheoptimizationschange
theoutputproducedby aprogram:”“. .. acompilerwhoseoutputproducegorrectresultsslowly is preferable
to onethatquickly producesnisleadingnumbers.

Two optimizationdegal underseverallanguagestandarddhecomedangerousvhenfloating-pointarith-
meticis introduced.First, reorderingexpressionften makes efficient useof registers. Becausdloating-
pointarithmeticcanviolate laws of identity, associatiity, andcommutatvity, this mayleadto resultsunin-
tendedby the programmerSecondmoving codeout of loopsor evaluatingconstantarithmeticat compile-
time may decreasexecutiontime. However, floating-pointcodecanhave sideeffects(i.e., flag settingor
trappingdueto exceptions) andrelocatingthe codemay producesideeffectsinconsistentvith the behaior
of thecodeattheold location. Instead Farnumsuggest®ptimizationghatdo notaffecta programs output:
removing unnecessargoercionsyectorizinginstructionsandbranchprediction.

Floating-pointrepresentatioalreadyapproximatesalues sohow muchworseis anothemapproximation
if it providesfor anincreasan speed”Someapplicationsvelcomethe potentiallydangerousptimizations
discussedbore. Theprogrammeanduserof theprogramarein thebestpositionto make suchadetermina-
tion, andmostoptimizing compilersoffer varyinglevels of optimization(andrisk). However, the compiler
shouldnever performoptimizationsthat have the potentialto alterthe programs outputwithout the users
knowledge,andFarnums suggestionshouldcertainlybefollowedin thedefault case.

4.3 Adaptive arithmetic via software

Certainly the bestcompromiseis to endurea speedpenaltyonly whenan applicationrequiresthe extra
accurag. Hardware and compilerscannotanticipatean application$ needs,but software can. With an
intimate knowledgeof the geometriccalculationsto be madefaster Shavchuk [9] makesuseof adaptive
arithmetic Adaptive arithmeticavoids exactcomputationput still returnscorrectanswers.

Shavchukgainsspeedyy exploiting featuresof the geometrigpredicatedor testingthe orientationand
incircle properties.The orientationtestdeterminesf a pointlies to the left of, to theright of, or on aline
or a plane. The incircle testdeterminesf a point lies inside, outside,or on a circle or a sphere. These
testsevaluatethe sign of a matrix determinantShevchuktakesadwantageof this propertyof the geometric
predicatesthey needonly thesign,andnottheexactmagnitudepf thedeterminantA correctresultcanbe
achievedwithout performinganexactcomputationandin fact,knowing the determinans exactvalueis no
moreusefulthansimply knowing its sign. However, it is worth noting thatthesevery geometrictestsoften
fail becausef roundof error So despitethatthe testsrequireonly a sign evaluation,it mustbe a robust
evaluation.

Shavchuk’s adaptve versionsof the geometricpredicatescomputea sequencef successiely more
accurateapproximationso the determinantComputatiorterminatesvhenforward-erroranalysisndicates
thatthe sign of the approximateresultcanbe trusted. To gain even moreefficiengy, Shavchukrefinesthe
work donefor previousapproximationgo yield amoreaccurateapproximatiorat eachstep.

5 Easeof Development

Theeaseor difficulty of developinga programincludesissuef reliability, readability andportability. The
behaior of a programfor the setof all possibleinput definesits reliability. The readabilityof a program
concernghe presencer absencef defensie, andoftencluttered,codefor handlingspecialcasesr com-
plicateddetails. The numberof differentplatformson which a programcanexecutecorrectlyandreliably
affectsits portability.

5.1 Many hardware architectures,many arithmetics

Mathematicalkraftsmanshigan be sharedas computersoftware designedo be usedcorve-
niently by peopleamongwhom mostwill understandts mathematicdittle betterthan most
motoristsunderstandheir cars’drive trains. But numerousbstaclesmpedethe dissemination
amongcomputersof programsas easyto useas are the keys of calculators...Oneof those
obstacless gratuitous:computerarithmeticsaretoo diverseand. . . occasionallytoo capricious
to allow programsso delicateasthosein the calculatorsto be copied mindlesslyonto other
machineswith norisk of malfunction.

Kahan[4] obsenresthat software sharingis difficult in the absencef a floating-pointstandard.As arith-
meticsdeviate from one set of hardware to another a programs reliability is in question. Executinga
program,which assumes particularsetof precisionsfor its datatypes,on anincompatiblemachinemay
yield unexpectedresults. Moreover, mathematicatloctrinesvary acrosscomputerarithmetics,and Kahan
suggestshatsomearemisleading.Evenif it is possibleto write codecompatiblewith every machineand
defensie againstevery aberrationit is notdesirableo do so. The codewould beunreadable&lutter, which
is far, far away from theimplementatiorit wasmeantto be. The effort of checkingfor rareanomaliesadds
to the executiontime of the program.Not to mention,the time andaggraation spentdevelopingthe code
increases.

However, executiontime and readability of a programare not the only sacrifices. As Kahanpoints
out, computersoftwareis destinedto be usedby peoplewho do not understandts workings,andno one
obligesthemto do so. The understandingequiredto detectunreliableresultsfrom a sharedpieceof soft-
ware executingon a unfamiliar computercould be enoughknowvledgeto have written the code oneself.
This eliminatesthe necessityfor sharing,but it createsa necessityfor mary more computerscienceand
mathematicexperts.

5.2 The predictability of compiling floating-point code

Recallfrom Section3.2thatlanguagestandardsio not specifypreciselythe semanticof floating-pointop-
erationsatthesource-lgel; thereforecompilerwritershave freedomin choosinghemachine-lgel floating-
point operationdo generate Determiningthe appropriateprecisionfor subepressionevaluationis a good
exampleof ataskleft to the compiler But the compilermaynot make the bestchoice,andit certainlymay
not make the choiceintendedby the programmerFurthermoredifferentcompilerswill malke differentde-
terminationscausingthe executionof the programto vary. Mindful of this, a programmeicanuseexplicit
type corversionsto ensurehatthe compilergeneratesodeusingtheintendedprecisions.

To illustrate explicit type corversions,consideragain Example2 from Section3.2: the statement
d: =d+s*s. Supposehe programmemwishesto evaluatethe subepressions* s with doubleprecision,
to take adwantageof the extra precisionof d. The statement: =d+doubl e(s) *doubl e(s) corverts
eachvalueof s to doubleprecisionbeforemultiplying, thentheresultof the subepressiormustalsohave
doubleprecision.Now, thereis no roomfor the compilerto make a possiblyundesirablechoice.

While explicit type conversionsolves the problemsof predictability and portability, it detractsfrom
the programs readabilityby introducingclutter Farnum[2] proposesa source-to-sourc&anslatorthat
insertsexplicit precisionconversions.Translatinghe original programjustbeforecompilationpreseresits
readabilityandsavesthe programmefrom manuallyinsertingthe corversions.

5.3 Software dependingon arithmetic standards

Software oftenassumeshe existenceof somearithmeticstandardst the compilerand/orhardwarelevels.
For instance Shavchuk[9] designedhe geometricalgorithmsto work on computersvhosefloating-point

8

arithmeticusesa baseof two andperformsexactrounding Thealgorithmsinclude Shavchuk’s own modi-
ficationto a pre-«isting techniqudor arbitraryprecisionarithmeticthatrunson a variety of floating-point
architectures.Shevchuk improvesthe speedof the techniquesignificantly by optimizingit for basetwo
with exactrounding. In otherwords,he gainsspeedby limiting the applicationto a specificfloating-point
architecture.

Exactroundingensureghatif theresultof anarithmeticoperationis exactly representable the pre-
scribedfloating-pointformat, thenthe exactresultis stored. Otherwise the exactresultis roundedto the
nearesfloating-pointvaluethat canbe representetby the significand. Tiesin choosingthe nearestepre-
sentablevalue may be broken arbitrarily Shevchuk requiresexactroundingin his techniquefor arbitrary
precisionarithmeticto facilitatea quick andcorrectmeasuref theroundof errorin results.

The geometricpredicatesoftware referencechereknowingly decreasegts portability for an increase
in speed.Shevchuklimits himself,and subsequenaisersof the software,to executingon computerghat
comply with his requirements Exactly hov muchtheserequirementsinderthe usability of the software
depend®nhow widespreadbasewo andexactroundingarein floating-pointarchitecturesTheconcluding
sectiontakesalook atthisissue.

6 Conclusions:IEEE Standard 754for Binary Floating-Point Arithmetic

Previoussectiongresensomecommonissuesassociateavith floating-pointrepresentatioandarithmetic,
aswell as,how theissuesmanifestat threelevels of abstraction.Theviability of the mannerin whicheach
hardwarearchitecturecompiler andpieceof softwarehandlefloating-pointarithmeticis aguable. Thereal
problemis the mereexistenceof somary differentmethodgor handlingfloating-pointarithmetic;in other
words,the absencef afloating-pointstandard.

6.1 |EEE 754

The disorderamongfloating-pointarithmeticsencouragea collaborationof industryandacademido de-
velop a standardor binary floating-pointrepresentatiomndarithmeticin the late 1970sandearly 1980s.
William Kahanof the Universityof Californiaat Berkeley becamepartof this groupasearlyastheir second
meetingin Novemberl977,andwentonto presenthe KCSProposalof which mary ideaswereeventually
includedin the IEEE Standad 754 for Binary Floating-Roint Arithmetic The standardwvas publishedin

1985,hut evenbeforeits official adoption,mary manufctureraimplementedEEE 75418, 6, 4].

Overton[6] suggestshatthe IEEE Standad 754 for Binary Floating-Roint Arithmeticprovidesthree
very importantrequirementsA fourth requirementwidely regardedasa significantcontrikution of IEEE
754,is alsoincludedhere.

First, all machineghatadoptlEEE 754 shouldconsistentlyrepresentloating-pointnumbers The IEEE
754representatioformatis asdescribedn Section2.2,with arequiredsingleformatthatusesa 32-bitword
(e=8, s=23). The optionaldoubleformat usesa 64-bit word (e=11, s=52) andthe majority of computers
provideit. Singleprecisionanddoubleprecisioncorrespondo the singleanddoubleformats,respectiely.

Secondall machineghatadoptlEEE 754 should‘correctly’ roundthe resultsof floating-pointopera-
tions. Let roundz) bethe correctlyroundedvalueof z, let z. bethe nearesnheighborof = representable
in IEEE 754 floating-pointformatsuchthatx < x4, andlet z_ bethe nearestepresentablaeighborof z
suchthatz_ < z. If z is anumberrepresentablen IEEE 754 floating-pointformat, thenroundz) = =x.
Otherwiseroundz) depend®n theroundingmodespecifiedwherethe choicesarethefollowing.

¢ Rounddown: roundz) = z_.

e Roundup: roundz) = z..

e Roundtowardszero:roundz) = z_ if z > 0. roundz) = z4 if z < 0.

e Roundnearestroundz) = z_ or roundz) = z, whichever is nearestIn the caseof atie, choose
the neighborwhoseleastsignificantbit is equalto zero.

NoticethatIEEE 754 accomplishethe exactroundingdiscussedn Section5.3.
Third, all machinesthat adoptIEEE 754 shouldtreat exceptionalsituationsconsistently IEEE 754
catayorizesexceptionsaccordingto thefollowing five types.

¢ Invalid operation is ary attemptto computethe quantities) x oo or 0/0.

Division by zero is theattemptto computez /0, wherexz canhave ary legal value.

Overflow (recall Section2.3).

Underflow (recall Section2.3).

Inexact occursary time IEEE 754 cannotexactly representhe resultof anarithmeticoperation.

Whenanexceptionoccurs,|EEE 754 signalsit by settingthe associateflag andrespondsaccordingto the
adefaultaction.

Fourth, all machineghat adoptIEEE 754 shouldsupportthe the specialvalues+oc andNaN. IEEE
754 providesdifferentrepresentationfr both —ooc and+oo. Either —oo or +0o0 may be the resultof a
division by zeroor overflon. The NaN, “Not a Number”, value corresponddo several bit patternsthat
symbolicallyrepresenwariouserrors. In IEEE 754, whenan invalid operationoccursthe resultis setto
a NaN whoserepresentatiomay containsomediagnosticinformation regardingits creation. Supporting
+oo and NaN valuesmakes IEEE 754 floating-pointarithmetic closed(recall Section2.2). Therefore,
uponencounteringdivision by zero(or aninvalid operationhestandardesponsés to produceaninfinite
resultandcontinueexecutionof theprogram ratherthaninterruptor terminatesxecution(theusualresponse
beforetheintroductionof IEEE 754).

6.2 Hardware support for the standard

Mosthardwaremanufcturergyuickly supportedhe |[EEE 754 standardwhich eliminatesmary of thediffi-
cultiessufferedbecausef varyingmachinamplementationsf floating-pointrepresentatioandarithmetic.
Amongtheissuesenefitingfrom the overwhelminghardwaresupportof IEEE 754 aresomethatthis paper
hasemphasizedinsuficient precisionfor intermediateresults,keepingapproximationerror lessthanone
ulp, andthe portability of floating-pointcode.

To fight the accumulatiornof approximationerror, IEEE 754 strongly recommendsupportfor an ex-
tendedformatanda correspondingxtendedprecision Recallthebenefitof along precisionfor intermedi-
ateresultsin Section3.1. The standardsuggestsllocatingat least15 bits for the exponentandat least63
bits for the significand.

IEEE 754’s requiremenof correctroundingdoesachieze Kahans goalin Section4.1 (*K eeptheerror
strictly smallerthanoneunit in the last place”) for onefloating-pointoperation.Let the absoluterounding
error associateavith a realnumberz equal|roundz) — z|. Usingary of the IEEE 754 roundingmodes,
theabsolutaoundingerrorof z is lessthanoneulp. In fact,whenusingroundto neaestmode theabsolute
roundingerror of z is at mosthalf anulp [6]. However, IEEE 754 doesnot guarantedhat a sequencef
floating-pointoperationswill yield a correctlyroundedresult. The accretionof roundingerror remainsa
problemwith floating-pointarithmetic.

10

Fromahardwareperspectie, IEEE 754 eliminateshe portability issuesaddresset Section5.1. IEEE
754's standardizatiorof floating-pointrepresentatiorand arithmeticallows programmersand end users
to form knowledgeableexpectationsof their floating-pointapplications. This understandingneednot be
machine-specificasa programtamgetedfor onemachinethat supportdEEE 754 shouldrun on othersthat
supportit.

6.3 Software support for the standard

The software supportof IEEE 754 is lessimpressie thanthe hardware support.In 1996,Kahan[5] com-
mentedon thelack of supportfor IEEE 754in compilersandprogramminganguages.

Now atrophythreaten$eaturesof IEEE 754caughtin aviciouscircle: Thosefeaturedack sup-
portin programminganguagesndcompilers,sothosefeaturesaremishandledand/orpracti-
cally unusablesothosefeaturesarelittle known andlessin demandandsothosefeaturedack
supportin programmindanguagegndcompilers.

To take adwantageof the large effort requiredby hardware designerso createandthencomply with a
standardor floating-pointarithmetic,Overton[6] suggestshat programminganguagesio the following:
definedatatypescompatiblewith IEEE 754 formats, allow control of roundingmodes,and provide the
standardesponse$o exceptions(while allowing accesgo exceptionflagsandallowing trappingof excep-
tions). The responsdo this call to armshasbeenmixed. Only a very small numberof languageshave
compliedcompletelywith Overtons suggestiongnda somavhat larger numberhave compliedpartially
but the popularlanguage®f C andFortranhave beenvery slow to respond.Until programminganguages
specifypreciselythe semantic®f source-lgel floating-pointoperationstheissuef mixedprecision(Sec-
tion 3.2), ill-advisedcompileroptimizations(Section4.2), andthe predictabilityof compilers(Section5.2)
will remainunresoled. Sinceprogramminglanguagesndcompilersdo not fully supportthe IEEE 754
standardmary amguethatthe efforts putforth in hardwaredesigncannotbe completelyrealized.

However, we shouldnot overlook the benefitof raisingawareness&boutfloating-pointissues.Encour
agingthecommunitiesof computersciencemathematicsphysics,andbeyondto beinformedprogrammers
andusersof floating-pointcodeshasbeenthe greatestontrikution of IEEE 754 andthe eventsurrounding
it. For Shavchuk’s applicationsa floating-pointstandardwill never meethis needsof arbitraryprecision
(Section3.3) andadaptve arithmetic(Section4.3), sohe makesuseof the bestfloating-pointhardwareand
software have to offer. Furthermore Shevchuktakesadwantageof widespreadcardware supportfor IEEE
754, by assumingbasetwo andexactroundingto gain efficiency (Section5.3). Dueto the sheematureof
floating-pointrepresentatioandarithmetic,therewill alwaysbe somelevel of approximationandthe best
defenseagainsthis uncertaintyis understanding.

References

[1] G.A. BlaauwandF. P. Brooks,Jr. ComputerArchitectue: Conceptsand Evolution Addison-W\ésley,
1997.

[2] C. Farnum. Compiler supportfor floating-pointcomputation. Softwae—Practice and Experience
18(7):701-709July 1988.

[3] K. Hwang.ComputerArithmetic: Principles,Architectue, and Design JohnWiley & Sons,1979.

[4] W. Kahan.Mathematicsvrittenin sand.In Proceeding®fthe Joint StatisticalMeetingof the American
StatisticalAssociationpagesl2—26,1983.

11

[5] W. Kahan.IEEE Standard’54for binaryfloating-pointarithmetic.Lecturenoteson the statusof IEEE
754,May 1996.

[6] M. L. Overton.NumericalComputingwith IEEE Floating Point Arithmetic SIAM, 2001.
[7] N.R. Scott. ComputeMNumberSystemg& Arithmetic PrenticeHall, 1985.
[8] C.SeveranceAn interview with the old manof floating-point.IEEE Computer March 1998.

[9] J. R. Shevchuk. Rolust adaptve floating-pointgeometricpractices. In Proceedingsf the Twelfth
AnnualSymposiunon ComputationalGeometrypagesl41-150May 1996.

12

