
Floating-Point fr om Thr eePerspectives

An IntegrativePaper

DaisyErin Parker

April 23,2001

1 Intr oduction

Thispapersurveys thefollowing threesubjectpapersfrom thefield of computerscience.

� William Kahan’s MathematicsWrittenin Sand[4] considersseveraldevicesusedwidely in theearly
1980sfor numericalcomputation.Kahanexaminesthetrendof increasinglycomplicatedandmathe-
maticallydensecircuitry in thesiliconchipsof thesedevicesandhow it impactstheendusers.

� CharlesFarnum’s CompilerSupportfor Floating-pointComputation[2] stressesthe importanceof
generatingpredictablemachine-level floating-pointoperationsfrom high-level languagesourcecode
anddiscussessomepitfalls commonto pastcompilers.

� JohnathanRichardShewchuk’s RobustAdaptiveFloating-pointGeometricPredicates[9] introduces
fastimplementationsof four widely-usedgeometricpredicates.Theimplementationtechniquesgain
speedby exploiting featuresof thepredicatesandhandlingfloating-pointvaluesefficiently.

Floating-pointarithmeticis a threadcommonto all threeof thesesubjectpapers.Eachpaperaddresses
someof theissuesoftenposedbyfloating-pointrepresentationandarithmetic:theexactnessof floating-point
numbers,theexecutiontime requiredby floating-pointoperations,andthedifficulty of developingfloating-
point programs. This integrative paperemphasizessuchfloating-point issuesat the levels of hardware,
compiler, andsoftware.

Theremainderof thispaperis structuredasfollows. Section2 reviewsbackgroundmaterialonfloating-
point representationandarithmetic.Section3 discussestheprecisionof floating-pointnumbers.Section4
considersthe relationshipbetweenthespeedof floating-pointoperationsandtheaccuracy of their results.
Section5 examinesthedevelopmentof floating-pointcode.Section6 presentstheIEEE Standard754 for
BinaryFloating-PointArithmetic andconclusions.

2 Background

Thissectionprovidessomebackgroundinformationonfloating-pointnotationthatwill beusefulthroughout
theremainderof thepaper.

2.1 Purposeof floating-point representation

Beforetheuseof floating-pointrepresentationbecamepopularin themid-1950s,mostcomputersemployed
a fixed-pointrepresentationfor numbers.As thenamefixed-pointimplies,the radix point, which servesas
theboundarybetweenthe integerportionandfractionalportionof a digit string, is fixedfor every number
represented.Representinga larger rangeof numbersin fixed-pointnotationrequiresincreasingthe length
of thedigit stringor scalinglargenumbersinto theexisting range.Floating-pointnotationevolved from a
needto representa largerrangeof numbersthanfixed-pointnotationafforded[1].

2.2 Representationof floating-point numbers

Thefloating-pointrepresentationof a number
�

consistsof four parts.A number
�

hasthemagnitudeof
its basenumberraisedto its exponentandmultiplied by its significand. The sign bit of

�
representsthe

signof its magnitude. ���
baseexponent � significand �����
	�� sign

1

The value of base(typically 2) is implicit in the floating-pointhardware. Usually, a biasedexponentis
stored.Thebiasedexponentis the resultof addinga quantityequalto half of theexponent’s rangeto the
trueexponent(e.g., with
�� possibleexponentvaluesanda trueexponentof -74, thenthebiasedexponent
is �� �
���� ������� ��� �). Useof a biasedexponentsimplifiesthecomparisonof two floating-pointnumbers,
by convertingall exponentvaluesto positive integers.It alsodefinesauniquezerorepresentation,assigning
a zerosignificandandthe mostnegative exponentin biased-exponentform to representthe floating-point
valueof zero.Thebit-representationof afloating-pointnumbertypically takeson thefollowing form,

significandbiased-exponentsign
 0 1 e e+1 e+s

wherethebiasedexponentis representedusing � bits,andthesignificandusing � bits [3, 7].
As thepreviousparagraphdescribesit, thefloating-pointrepresentationof anumberis notunique. One

cancertainlyconceive of multiple waysto representthesamenumber(e.g., 	�� � � 	!�����
	�� � � �
	���� �	��#" � �$	��������%�
���
	�� �). Therefore,ratherthanallow redundantfloating-pointrepresentations,normalization
of thesignificanddefinesauniqueexponent.Normalizationmovestheradix point of thesignificand’s digit
string to the position just after the mostsignificantnonzerodigit, andupdatesthe exponentaccordingly.
Normalizationhastwo desirablesideeffects:it preservesthemaximumprecisionallowedin therepresented
number, and it ensuresthat every numberrepresentedwill have equalprecision. Precisionmeasuresthe
exactnessof anumber.

Floating-pointrepresentationis not closed. To exhibit closurewith respectto an operation,any two
operandsexactlyrepresentablein floating-pointformatmustproducearesultexactlyrepresentablein floating-
point format.While therationalnumbershave closurefor addition,subtraction,multiplicationanddivision
(exceptby zero),floating-pointnumberscertainlydonot. Therearetwo reasonsthatafloating-pointnumber
maynot beexactly representable— thevalueof its significandmaynotberepresentablewith theprecision
allowed,or thevalueof its exponentmaynot fit in range[1].

2.3 Floating-point arithmetic

Floating-pointarithmeticapproximatesthearithmeticof realnumbers.It is morecomplicatedthanasimple
addition, subtraction,multiplication, or division of two integers. To perform floating-pointaddition or
subtraction,onemustadjustthe operandwith the smallerexponentto matchthe larger exponentbefore
addingor subtractingthesignificands.To performfloating-pointmultiplication,onemustaddtheexponents
of the operandsandmultiply their significands.To performfloating-pointdivision, onemustsubtractthe
exponentof the divisor from the exponentof the dividend anddivide the significandsappropriately. At
thevery least,following theseproceduresis necessary, alreadymakingfloating-pointarithmeticexpensive
comparedto integerarithmetic.

Moreover, several otherfloating-pointissuesarelikely to ariseandrequireresolution. The first issue
is normalization(seeSection2.2). If anarithmeticresulthasmorethanonenonzerodigit beforetheradix
point, it is not in normalizedform. Suchresultsneedan extra normalizationstep. The secondissueis
overflow. Overflow occurswhentheexactresultof anoperationhasanabsolutevaluelargerthan & max, the
largestfinite numberrepresentablein floating-pointformat.Typically, situationsof overflow areresolvedby
settingtheresultto '(& max or interrupting/terminating execution.Thethird issueis underflow. Underflow
occurswhentheexact resultof anoperationhasmagnitudelessthanthesmallestnumberrepresentablein
floating-pointformat. Usually, situationsof underflow areresolved by settingthe resultto zero. Thethird
issueis unrepresentablenumbers.Somearithmeticresultssimply arenot exactly representablein floating-
point format,androundingsucha resultresolvesthis issue.Theroundingprocesschoosesa representable

2

floating-pointneighborof a numberunrepresentablein floating-pointformat. Most machineshave several
modesof rounding,andeachmodehasa differentrule for determiningwhich neighborto choose.These
floating-pointissuesfurthercomplicatethearithmeticandaddto its expense[1, 7].

2.4 The inherent problem

Thereis a greatchallengeinherentto thetaskof usinga machineto representandoperateon numbers.A
finite amountof discretevaluessimplycannotmodela densesystemof realnumbersaccurately. Kahan[4]
recognizesthatsomeamountof erroris inevitable.

So,uncompromisingadherenceto themostrigorousrulesfor approximatearithmeticwill not
protecta computerfrom unpleasantsurprises.Apparentlytheapproximationof thecontinuum
by a discretesetmustintroducesomeirreduciblequantumof noiseinto mathematicalthought,
aswell asinto computedresults,andwedon’t know how big thatquantumis.

Therefore,the true challengeof floating-pointrepresentation,or any othersystemfor approximatingreal
numbers,is how to containa smallamountof unavoidablenoiseandrestrainfrom inducinglarger, unnec-
essaryerror.

2.5 Levelsof abstraction

Blaauw and Brooks [1] describefloating-pointnotationas an abstraction,“Floating point is one of the
first successfulstepstoward a higher-level language. . .Theuserthinks in termsof numbers,not of their
representations.” To the programmer, a floating-pointvalueis just a number, asan integer valueis just a
number. In software,programminglanguagesprovide oneor moredatatypesfor floating-pointnumbers
andoverloadedoperatorson thenumbers,accordingto thedatatypesof theoperands.This eliminatesthe
burdenontheprogrammerto addnumbersof onedatatypedifferentlythannumbersof adifferentdatatype.
Thecompilerhastheresponsibilityof determiningwhetheradditionmeansintegeradditionor floating-point
addition,aswell asatwhatprecisionto performfloating-pointaddition.Yeteventhecompilerdoesnothave
theonusof manipulatingthebit-representations of sign,exponent,andsignificand.It leavesthesedetailsto
hardware. Abstractingfloating-pointrepresentationateachof theselevelshasimplicationsontheprecision
of floating-pointnumbers(Section3), the relationshipbetweenthe speedof a floating-pointprogramand
theaccuracy of its results(Section4), andtheeaseof developingfloating-pointprograms(Section5).

3 Precision

Precisionof a numberindicatesthe exactnessof the quantity, which is often expressedby the numberof
significantdigits. A realnumberhasno limit on thesignificantdigits allowed,andthus,it will alwaysbe
exact.A machinenumberhaslimited precision,andasaresult,it maybeonly anapproximationof thevalue
it intendsto represent.In particular, limiting theprecisionof a floating-pointnumberaffectstheexactness
of its significand.Giventhatwe mustacceptsomeinaccuracy in floating-pointrepresentationdueto finite
precision,two questionsarise:

1. How muchprecisionshouldafloating-pointformatallow?

2. If morethanoneprecisionis presentin thesamecomputation,how shouldthey beallowedto interact?

3

3.1 Defining precisionin hardware

Typically, amachineoffersat leasttwo typesof precision.It usesanormalprecisionfor theinitial operands
andthefinal resultsof arithmeticoperations,anda long precisionfor theintermediateresultsof arithmetic
subroutines(compositionof severalarithmeticoperations).As discussedpreviously, thefloating-pointrep-
resentationof a numberis potentiallyanapproximationof its actualvalue. In anarithmeticsubroutinethat
requiresseveralintermediateresults,theapproximationscancompounduntil theaccuracy of thefinal result
hasbeenseriouslycompromised.Allowing long precisionfor intermediateresultscanhelppreventsucha
situation.Considerthefollowing (contrived)examplein decimalarithmetic.

Example1 Let normalprecisionbe4 digitsandlet longprecisionbe6 digits. Computex:=a*b*c, where
a=0.0040, b=0.0120 andc=100.0.

Intermediateresults Intermediateresults
havenormalprecision have longprecision

temp:=a*b temp:=0.0000 temp:=0.0000 48
x:=temp*c x:=0.0000 x:=0.0048

Thecomputationrequireslong precisionat the intermediatestepto ensurethesameaccuracy astheresult
of a normalarithmeticoperation.

Machinearchitecturesusuallyreserve long precisionsfor register locations(but they maybe found in
othermemorylocations,aswell). The registersmake up a small set of memorydevoted to temporarily
containingoperandsandresults.Registersarequickly addressableandcloseto theprocessor.

Kahan[4, pages9-10] citesthe caseof digits beingdroppedprematurelyfrom the right-handsideof
a register-residentvalueasthemostcommonaberrationin floating-pointarithmetic. Insufficient precision
causesthis aberration,andin the presenceof suchdisparity, arithmeticpropertiesmay not seemto hold.
Kahanprovidesexamplesonvariouscalculatorswheremultiplicationis notcommutative or monotonicand
the identity propertyfails. It is importantto realizethat this aberrationcanleadto unexpectedresultson
one machine;however, realizing that the phenomenonwill vary acrossmachinesis far more important.
Certainly, on two machinesthat retaina differentnumberof significantdigits the computedresultof the
samearithmeticoperationmaydiffer.

It is difficult to know how muchprecisionis enough. The numberof significantdigits necessaryfor
onecomputationwill notbeadequatefor another. In fact,Kahan[4] mentionsseveralcircumstanceswhere
keepingany reasonablenumberof significantdigits cannotprevent inaccuraciesthataredestinedto occur.
Of course,greaterprecisioncostsmorecomputationtime,sohardwaredesignersmustconsiderthetrade-off
carefully. Hardwaredesignersshouldalsotakecarein determininghow many morebitsarein longprecision
thanin normalprecision.

3.2 Compiler evaluation of mixed precision

Many languagessupportmultiple precisions,associatinga datatype with each. The datatype of a value
indicateshow many bits its representationallows. For illustration, we will considersingleprecisionand
doubleprecision, wheredoubleprecisionhastwice asmany digits assingle. Most languagesincludeat
leastsingleanddoubleprecisions,despitethe fact that their target machinesmaybe limited to a different
setof precisions.Sinceasourcelanguageabstractsthetargethardware,having bothlanguageandhardware
supportthesameprecisionsis not necessary. A compilermapssourcecodeto machineinstructionsfor the
target hardware. However, most languagestandardsdo not specify the exact semanticsof floating-point
operations,sincefloating-pointhardwaresystemscanvary widely. As a result,thereis a lot of freedomfor

4

thecompilerwriter to determinethemachine-level instructionsgeneratedfrom source-level floating-point
operations.

Farnum[2] suggeststhatcompilerwritersoftenabusesuchfreedom,offering thecaseof mappingmore
thanonesource-languageprecisionto thesamemachineprecision.Promotingall singleprecisionvariables
to doubleprecisionmay seemharmless,but it could be the casethat the programdependson a double
precisionvariablehaving twice theprecisionof a singleprecisionvariable(e.g., theproductof two single
precisionvariablesis exactly representablein doubleprecision). Unlessthe target machinesupportsonly
oneprecision,evenreachingthissituationdemonstratesanundesirablecompiler.

Farnum[2] alsopresentstheproblemof multipleprecisionsin asinglestatement.Considerthefollowing
example,which is not language-specific.

Example2 Let s denotea singleprecisionvariableandlet d denoteadoubleprecisionvariable.Then,the
statementd:=d+s*s includesbothsingleanddoubleprecisions.

The difficulty with Example2 is decidingat what precisionto evaluatethe subexpressions*s. As be-
fore, thecompilerwriter hasthe freedomto make this determination.Farnumcautionsthat thechoicebe
consideredcarefully, anddiscussesthefollowing alternatives.

Strict evaluation usesa precisiononly as large as the largestoperand(evaluatings*s with singlepre-
cision). In Example2, the error inducedby roundings*s to singleprecisionwill taint the extra
precisionof d.

Widest available usesthewidestprecisionavailable(evaluatings*s with doubleprecision).It is difficult
to anticipatewhentheextra precisionwill beworth theincreasedcomputationtime, asit happensto
befor Example2. In somecases,theexpensewill bewasted.

Widest needed assignsprecisionsvia anexpressiontree(alsoevaluatings*s with doubleprecision).Ten-
tativeprecisionsareassignedin abottom-uptraversalusingstrictevaluation.Then,atop-down traver-
salassignsasubexpressionthewiderof its tentativeprecisionandtheprecisionexpectedby its parent.
Althoughthisstrategy is notassimpleastheothertwo alternativesandrequiresmoreeffort from the
compilerwriter, Farnumpreferswidestneededprecisionbecauseit retainsthe usefulnessof over-
loadedoperatorswithout wastingextracomputation.

Of course,a programmercanforce the compilerto make theappropriatedecisionsby employing explicit
typeconversions,but this leadsto increasedprogrammereffort andclutteredcode(seeSection5.2).

3.3 Arbitrary precisionin software

It is possiblethat theprecisionssupportedby languageandmachinearenot sufficient to meetanapplica-
tion’sneeds.Softwarelibrariescanprovide theillusion of extendedprecision,by mappingsoftware-created
datatypesto thoseof language/machineprecisions.Shewchuk[9] computesfloating-pointgeometricpred-
icatesusingarbitrary precision, which allows therepresentationof numberswhoseprecisionsurpassesthe
usuallimits.

In particular, Shewchukusesmultiple-termformat for storingnumbersof arbitraryprecision.Multiple-
term format representsa numberas a sum of ordinary floating-pointnumbers,eachwith its own sign,
exponent,andsignificand.An arbitraryprecisionvalue) is expressedasanexpansion) �)+*-,/.�.�.0,() � ,() � ,
whereeach)+1 is a floating-pointvalue. For Shewchuk’s application,heimposessomeadditionalstructure
on the expansionby requiring that it be nonoverlappingand orderedby magnitude. Two floating-point
valuesqualify asnonoverlappingif theleastsignificantnonzerobit of oneis moresignificantthanthemost

5

significantnonzerobit of theother(assumingbasetwo). For suchanexpansion) ,)2* is aneasybut rough
approximationof) , andthesignof) is simply thesignof)+* (Section4.3discusseswhy this is desirable).
Supposethateach)+1 ’s significandis limited to 6 digits of precision.A number) � 	��3	�� . 	�	��3	�	��3	 � , which
requires11 digits for exact representation,canbe storedas) �) � ,4) �

� 	��3	�� . 	�	 � , � . �����3	�	��3	 � �	��3	�� . 	�	��3	 � . Shewchukalsoprovidesalgorithmsfor theadditionandmultiplicationof expansions.
The multiple-termformat, andarbitraryarithmeticin general,is a nice option, but it hasa downside.

It gives the writer of a software library muchflexibility in representingandoperatingon numbersof the
precisionthatshedesires;however, it alsoburdensthelibrary-writer, by forcing herto considerthedetails
that areoften left to hardwareandcompilers. The readability, portability, anddevelopmentspeedof the
library’s codesuffersasa result.

4 Speedvs. Accuracy

Thegreatexpenseof floating-pointrepresentationandarithmeticcannotbeignored.At aminimum,opera-
tionsin floating-pointarithmeticrequiremorework thansimplyadding,subtracting,multiplying or dividing
two integers. Of course,it is possibleto pipelinesuchwork, an implementationtechniquethat overlaps
the executionof multiple instructions.However, handlingexceptionalcases,like overflow/underflow and
rounding(seeSection2.3),canconsumeevenmoreexecutiontime. An increasein thenumberof bits to be
manipulated,sayfor greaterprecision,alsoincreasesexecutiontime.

In a word, it is theaccuracyof a floating-pointnumberthat is soexpensive. Floating-pointoperations
cancertainlygainspeedif they take shortcutsin exception-handlingand/ordesirefewerdigits of precision.
It can also be efficient to optimize algorithms,which may reorderfragile floating-pointoperations. Of
course,this compromisesthecorrectnessof the result. Are thereapplicationsin which a fastbut possibly
inexact solutionis moreacceptablethana slow but correctsolution? Speedfor accuracy is an important
trade-off, andits applicabilityshouldbeexaminedateachlevel thatabstractsfloating-pointarithmetic.

4.1 A simple goal for floating-point arithmetic in hardware

Kahan[4] proposesa simple goal for any operationof floating-pointarithmetic: Keepthe error strictly
smallerthanoneunit in the last place(ulp). Thegoal requiresevery floating-pointresultto becorrectup
to theleastsignificantdigit. However, describingthegoalassimpleis misleading,andKahanquickly says
so. It is aneasyway of specifyingtheaccuracy of results,but difficult to enforce.Often,keepingtheerror
below oneulp requiresgreaterprecisionfor intermediatecalculations(recallSection3.1). Carryingmore
andmoredigitsslows computation,andquickly becomesimpractical.

Moreover, Kahan’s goalaccomplisheslessthanonewould hope.This provision guaranteesneitherthe
sign-symmetryof 57698 �) � � � 57698 ���) � nor themonotonicityof :) [4]. For somepersistinginaccuracies,
achieving thisgoalis practicallyimpossible.Is themerepossibilityof enhancingtheaccuracy of afloating-
point resultworth the penaltyin executiontime? The answeris yesandno. Extendingthe precisionof
intermediatecalculationsbenefitscomputation,but recognizingthepoint of diminishingreturnsis crucial.
A limit existsbeyondwhich thegainsfrom carryingmoredigits aresparse,andthey cannotoffsettheextra
expense.

4.2 Optimizing compilers

An optimizing compilernot only translatessourcecodeinto machineinstructions,but alsostructuresthe
machineinstructionsin a way that encouragesefficient computation.Ideally, the compilershouldensure
that the processorconstantlydoesusefulandnon-redundantwork, which involves the rearrangementand

6

eliminationof somemachineinstructions. Farnum[2] warnsagainstsomecommonoptimizationsin the
presenceof floating-pointarithmeticandassertsthatundernocircumstanceshouldtheoptimizationschange
theoutputproducedby aprogram:“. . . acompilerwhoseoutputproducescorrectresultsslowly is preferable
to onethatquickly producesmisleadingnumbers.”

Two optimizationslegalunderseveral languagestandardsbecomedangerouswhenfloating-pointarith-
metic is introduced.First, reorderingexpressionsoftenmakesefficient useof registers.Becausefloating-
point arithmeticcanviolatelaws of identity, associativity, andcommutativity, this mayleadto resultsunin-
tendedby theprogrammer. Second,moving codeoutof loopsor evaluatingconstantarithmeticat compile-
time maydecreaseexecutiontime. However, floating-pointcodecanhave sideeffects(i.e., flag settingor
trappingdueto exceptions),andrelocatingthecodemayproducesideeffectsinconsistentwith thebehavior
of thecodeattheold location.Instead,Farnumsuggestsoptimizationsthatdonotaffectaprogram’soutput:
removing unnecessarycoercions,vectorizinginstructions,andbranchprediction.

Floating-pointrepresentationalreadyapproximatesvalues,sohow muchworseisanotherapproximation
if it providesfor anincreasein speed?Someapplicationswelcomethepotentiallydangerousoptimizations
discussedabove. Theprogrammeranduserof theprogramarein thebestpositionto makesuchadetermina-
tion, andmostoptimizingcompilersoffer varyinglevelsof optimization(andrisk). However, thecompiler
shouldnever performoptimizationsthathave thepotentialto alter theprogram’s outputwithout theuser’s
knowledge,andFarnum’s suggestionsshouldcertainlybefollowedin thedefault case.

4.3 Adaptive arithmetic via software

Certainly, the bestcompromiseis to endurea speedpenaltyonly whenan applicationrequiresthe extra
accuracy. Hardware and compilerscannotanticipatean application’s needs,but software can. With an
intimateknowledgeof thegeometriccalculationsto be madefaster, Shewchuk [9] makesuseof adaptive
arithmetic. Adaptive arithmeticavoidsexactcomputation,but still returnscorrectanswers.

Shewchukgainsspeedby exploiting featuresof thegeometricpredicatesfor testingtheorientationand
incircle properties.Theorientationtestdeterminesif a point lies to the left of, to the right of, or on a line
or a plane. The incircle testdeterminesif a point lies inside,outside,or on a circle or a sphere. These
testsevaluatethesignof amatrix determinant.Shewchuktakesadvantageof thispropertyof thegeometric
predicates:they needonly thesign,andnot theexactmagnitude,of thedeterminant.A correctresultcanbe
achievedwithoutperforminganexactcomputation,andin fact,knowing thedeterminant’s exactvalueis no
moreusefulthansimply knowing its sign. However, it is worth notingthatthesevery geometrictestsoften
fail becauseof roundoff error. So despitethat the testsrequireonly a sign evaluation,it mustbe a robust
evaluation.

Shewchuk’s adaptive versionsof the geometricpredicatescomputea sequenceof successively more
accurateapproximationsto thedeterminant.Computationterminateswhenforward-erroranalysisindicates
that thesignof theapproximateresultcanbe trusted.To gainevenmoreefficiency, Shewchukrefinesthe
work donefor previousapproximationsto yield amoreaccurateapproximationateachstep.

5 Easeof Development

Theeaseor difficulty of developingaprogramincludesissuesof reliability, readability, andportability. The
behavior of a programfor thesetof all possibleinput definesits reliability. The readabilityof a program
concernsthepresenceor absenceof defensive, andoftencluttered,codefor handlingspecialcasesor com-
plicateddetails.Thenumberof differentplatformson which a programcanexecutecorrectlyandreliably
affectsits portability.

7

5.1 Many hardware architectures,many arithmetics

Mathematicalcraftsmanshipcanbe sharedascomputersoftwaredesignedto be usedconve-
niently by peopleamongwhom mostwill understandits mathematicslittle betterthanmost
motoristsunderstandtheir cars’drive trains.But numerousobstaclesimpedethedissemination
amongcomputersof programsaseasyto useasare the keys of calculators. . .Oneof those
obstaclesis gratuitous:computerarithmeticsaretoodiverseand. . .occasionallytoocapricious
to allow programsso delicateas thosein the calculatorsto be copiedmindlesslyonto other
machineswith no risk of malfunction.

Kahan[4] observesthat softwaresharingis difficult in the absenceof a floating-pointstandard.As arith-
meticsdeviate from one set of hardware to another, a program’s reliability is in question. Executinga
program,which assumesa particularsetof precisionsfor its datatypes,on an incompatiblemachinemay
yield unexpectedresults.Moreover, mathematicaldoctrinesvary acrosscomputerarithmetics,andKahan
suggeststhatsomearemisleading.Evenif it is possibleto write codecompatiblewith every machineand
defensive againstevery aberration,it is notdesirableto do so.Thecodewouldbeunreadableclutter, which
is far, far away from theimplementationit wasmeantto be.Theeffort of checkingfor rareanomaliesadds
to theexecutiontime of theprogram.Not to mention,the time andaggravation spentdevelopingthecode
increases.

However, executiontime and readabilityof a programarenot the only sacrifices. As Kahanpoints
out, computersoftwareis destinedto be usedby peoplewho do not understandits workings,andno one
obligesthemto do so. Theunderstandingrequiredto detectunreliableresultsfrom a sharedpieceof soft-
wareexecutingon a unfamiliar computercould be enoughknowledgeto have written the codeoneself.
This eliminatesthe necessityfor sharing,but it createsa necessityfor many morecomputerscienceand
mathematicsexperts.

5.2 The predictability of compiling floating-point code

Recallfrom Section3.2thatlanguagestandardsdonot specifypreciselythesemanticsof floating-pointop-
erationsatthesource-level; therefore,compilerwritershavefreedomin choosingthemachine-level floating-
point operationsto generate.Determiningtheappropriateprecisionfor subexpressionevaluationis a good
exampleof a taskleft to thecompiler. But thecompilermaynot make thebestchoice,andit certainlymay
not make thechoiceintendedby theprogrammer. Furthermore,differentcompilerswill make differentde-
terminations,causingtheexecutionof theprogramto vary. Mindful of this,a programmercanuseexplicit
typeconversionsto ensurethatthecompilergeneratescodeusingtheintendedprecisions.

To illustrate explicit type conversions,consideragain Example2 from Section3.2: the statement
d:=d+s*s. Supposethe programmerwishesto evaluatethe subexpressions*s with doubleprecision,
to take advantageof theextra precisionof d. The statementd:=d+double(s)*double(s) converts
eachvalueof s to doubleprecisionbeforemultiplying, thentheresultof thesubexpressionmustalsohave
doubleprecision.Now, thereis no roomfor thecompilerto make apossiblyundesirablechoice.

While explicit type conversionsolves the problemsof predictability and portability, it detractsfrom
the program’s readabilityby introducingclutter. Farnum[2] proposesa source-to-sourcetranslatorthat
insertsexplicit precisionconversions.Translatingtheoriginalprogramjustbeforecompilationpreservesits
readabilityandsavestheprogrammerfrom manuallyinsertingtheconversions.

5.3 Software dependingon arithmetic standards

Softwareoftenassumestheexistenceof somearithmeticstandardsat thecompilerand/orhardwarelevels.
For instance,Shewchuk[9] designedthegeometricalgorithmsto work on computerswhosefloating-point

8

arithmeticusesabaseof two andperformsexactrounding. ThealgorithmsincludeShewchuk’s own modi-
ficationto a pre-existing techniquefor arbitraryprecisionarithmeticthatrunson a varietyof floating-point
architectures.Shewchuk improves the speedof the techniquesignificantlyby optimizing it for basetwo
with exact rounding. In otherwords,hegainsspeedby limiting theapplicationto a specificfloating-point
architecture.

Exactroundingensuresthat if the resultof anarithmeticoperationis exactly representablein thepre-
scribedfloating-pointformat, thentheexact result is stored.Otherwise,theexact result is roundedto the
nearestfloating-pointvaluethat canberepresentedby thesignificand.Ties in choosingthenearestrepre-
sentablevaluemaybebroken arbitrarily. Shewchukrequiresexact roundingin his techniquefor arbitrary
precisionarithmeticto facilitateaquick andcorrectmeasureof theroundoff errorin results.

The geometricpredicatesoftware referencedhereknowingly decreasesits portability for an increase
in speed.Shewchuk limits himself, andsubsequentusersof thesoftware,to executingon computersthat
comply with his requirements.Exactly how muchtheserequirementshindertheusability of thesoftware
dependsonhow widespreadbasetwo andexactroundingarein floating-pointarchitectures.Theconcluding
sectiontakesa look at this issue.

6 Conclusions:IEEE Standard 754for Binary Floating-Point Arithmetic

Previoussectionspresentsomecommonissuesassociatedwith floating-pointrepresentationandarithmetic,
aswell as,how theissuesmanifestat threelevelsof abstraction.Theviability of themannerin whicheach
hardwarearchitecture,compiler, andpieceof softwarehandlefloating-pointarithmeticis arguable.Thereal
problemis themereexistenceof somany differentmethodsfor handlingfloating-pointarithmetic;in other
words,theabsenceof a floating-pointstandard.

6.1 IEEE 754

Thedisorderamongfloating-pointarithmeticsencourageda collaborationof industryandacademiato de-
velop a standardfor binaryfloating-pointrepresentationandarithmeticin the late1970sandearly 1980s.
William Kahanof theUniversityof CaliforniaatBerkeley becamepartof thisgroupasearlyastheirsecond
meetingin November1977,andwenton to presenttheKCSProposalof whichmany ideaswereeventually
includedin the IEEE Standard 754 for Binary Floating-Point Arithmetic. The standardwaspublishedin
1985,but evenbeforeits official adoption,many manufacturersimplementedIEEE 754[8, 6, 4].

Overton[6] suggeststhat the IEEE Standard 754 for Binary Floating-Point Arithmeticprovidesthree
very importantrequirements.A fourth requirement,widely regardedasa significantcontribution of IEEE
754,is alsoincludedhere.

First,all machinesthatadoptIEEE754shouldconsistentlyrepresentfloating-pointnumbers.TheIEEE
754representationformatis asdescribedin Section2.2,with arequiredsingleformatthatusesa32-bitword
(� =8, � =23). The optionaldoubleformat usesa 64-bit word (� =11, � =52) andthe majority of computers
provide it. Singleprecisionanddoubleprecisioncorrespondto thesingleanddoubleformats,respectively.

Second,all machinesthatadoptIEEE 754should‘correctly’ roundtheresultsof floating-pointopera-
tions. Let round�) � bethecorrectlyroundedvalueof) , let)<; be thenearestneighborof) representable
in IEEE 754floating-pointformatsuchthat)>=?)@; , andlet) " bethenearestrepresentableneighborof)
suchthat) " =A) . If) is a numberrepresentablein IEEE 754floating-pointformat, thenround�) � �) .
Otherwise,round�) � dependson theroundingmodespecified,wherethechoicesarethefollowing.

� Rounddown: round�) � �) " .
� Roundup: round�) � �)<; .

9

� Roundtowardszero:round�) � �) " if)CB � . round�) � �)<; if)C= � .
� Roundnearest:round�) � �) " or round�) � �)<; , whichever is nearest.In thecaseof a tie, choose

theneighborwhoseleastsignificantbit is equalto zero.

NoticethatIEEE 754accomplishestheexactroundingdiscussedin Section5.3.
Third, all machinesthat adoptIEEE 754 shouldtreat exceptionalsituationsconsistently. IEEE 754

categorizesexceptionsaccordingto thefollowing five types.

� Invalid operation is any attemptto computethequantities�D�CE or �GFH� .
� Division by zero is theattemptto compute) FH� , where) canhave any legal value.

� Overflow (recallSection2.3).

� Underflow (recallSection2.3).

� Inexact occursany time IEEE754cannotexactly representtheresultof anarithmeticoperation.

Whenanexceptionoccurs,IEEE 754signalsit by settingtheassociatedflag andrespondsaccordingto the
adefault action.

Fourth, all machinesthat adoptIEEE 754 shouldsupportthe the specialvalues ' E andNaN. IEEE
754 providesdifferent representationsfor both �IE and , E . Either �JE or , E may be the resultof a
division by zeroor overflow. The NaN, “Not a Number”, valuecorrespondsto several bit patternsthat
symbolically representvariouserrors. In IEEE 754, whenan invalid operationoccursthe result is set to
a NaN whoserepresentationmay containsomediagnosticinformationregardingits creation. Supporting
' E and NaN valuesmakes IEEE 754 floating-pointarithmeticclosed(recall Section2.2). Therefore,
uponencounteringadivisionby zero(or aninvalid operation)thestandardresponseis to produceaninfinite
resultandcontinueexecutionof theprogram,ratherthaninterruptor terminateexecution(theusualresponse
beforetheintroductionof IEEE 754).

6.2 Hardwaresupport for the standard

Mosthardwaremanufacturersquickly supportedtheIEEE754standard,whicheliminatesmany of thediffi-
cultiessufferedbecauseof varyingmachineimplementationsof floating-pointrepresentationandarithmetic.
Amongtheissuesbenefitingfrom theoverwhelminghardwaresupportof IEEE754aresomethatthispaper
hasemphasized:insufficient precisionfor intermediateresults,keepingapproximationerror lessthanone
ulp, andtheportability of floating-pointcode.

To fight the accumulationof approximationerror, IEEE 754 stronglyrecommendssupportfor an ex-
tendedformatandacorrespondingextendedprecision. Recallthebenefitof a long precisionfor intermedi-
ateresultsin Section3.1. Thestandardsuggestsallocatingat least15 bits for theexponentandat least63
bits for thesignificand.

IEEE 754’s requirementof correctroundingdoesachieve Kahan’s goal in Section4.1 (“K eeptheerror
strictly smallerthanoneunit in thelastplace”) for onefloating-pointoperation.Let theabsoluterounding
error associatedwith a realnumber) equal K round�) �L�)%K . Usingany of theIEEE 754roundingmodes,
theabsoluteroundingerrorof) is lessthanoneulp. In fact,whenusingroundto nearestmode,theabsolute
roundingerror of) is at mosthalf an ulp [6]. However, IEEE 754 doesnot guaranteethat a sequenceof
floating-pointoperationswill yield a correctlyroundedresult. The accretionof roundingerror remainsa
problemwith floating-pointarithmetic.

10

Fromahardwareperspective, IEEE754eliminatestheportability issuesaddressedin Section5.1. IEEE
754’s standardizationof floating-point representationand arithmeticallows programmersand end users
to form knowledgeableexpectationsof their floating-pointapplications.This understandingneednot be
machine-specific,asa programtargetedfor onemachinethatsupportsIEEE 754shouldrun on othersthat
supportit.

6.3 Software support for the standard

Thesoftwaresupportof IEEE 754 is lessimpressive thanthehardwaresupport.In 1996,Kahan[5] com-
mentedon thelackof supportfor IEEE754in compilersandprogramminglanguages.

Now atrophythreatensfeaturesof IEEE754caughtin aviciouscircle: Thosefeatureslacksup-
port in programminglanguagesandcompilers,sothosefeaturesaremishandledand/orpracti-
cally unusable,sothosefeaturesarelittle known andlessin demand,andsothosefeatureslack
supportin programminglanguagesandcompilers.

To take advantageof the large effort requiredby hardwaredesignersto createandthencomplywith a
standardfor floating-pointarithmetic,Overton[6] suggeststhatprogramminglanguagesdo thefollowing:
definedatatypescompatiblewith IEEE 754 formats,allow control of roundingmodes,andprovide the
standardresponsesto exceptions(while allowing accessto exceptionflagsandallowing trappingof excep-
tions). The responseto this call to armshasbeenmixed. Only a very small numberof languageshave
compliedcompletelywith Overton’s suggestionsanda somewhat larger numberhave compliedpartially,
but thepopularlanguagesof C andFortranhave beenvery slow to respond.Until programminglanguages
specifypreciselythesemanticsof source-level floating-pointoperations,theissuesof mixedprecision(Sec-
tion 3.2), ill-advisedcompileroptimizations(Section4.2),andthepredictabilityof compilers(Section5.2)
will remainunresolved. Sinceprogramminglanguagesandcompilersdo not fully supportthe IEEE 754
standard,many arguethattheeffortsput forth in hardwaredesigncannotbecompletelyrealized.

However, we shouldnot overlookthebenefitof raisingawarenessaboutfloating-pointissues.Encour-
agingthecommunitiesof computerscience,mathematics,physics,andbeyondto beinformedprogrammers
andusersof floating-pointcodeshasbeenthegreatestcontribution of IEEE 754andtheeventsurrounding
it. For Shewchuk’s applications,a floating-pointstandardwill never meethis needsof arbitraryprecision
(Section3.3)andadaptive arithmetic(Section4.3),sohemakesuseof thebestfloating-pointhardwareand
softwarehave to offer. Furthermore,Shewchuktakesadvantageof widespreadhardwaresupportfor IEEE
754,by assumingbasetwo andexact roundingto gainefficiency (Section5.3). Dueto thesheernatureof
floating-pointrepresentationandarithmetic,therewill alwaysbesomelevel of approximation,andthebest
defenseagainstthisuncertaintyis understandingit.

References

[1] G. A. BlaauwandF. P. Brooks,Jr. ComputerArchitecture: ConceptsandEvolution. Addison-Wesley,
1997.

[2] C. Farnum. Compiler supportfor floating-point computation. Software–Practice and Experience,
18(7):701–709,July 1988.

[3] K. Hwang.ComputerArithmetic:Principles,Architecture, andDesign. JohnWiley & Sons,1979.

[4] W. Kahan.Mathematicswritten in sand.In Proceedingsof theJoint StatisticalMeetingof theAmerican
StatisticalAssociation, pages12–26,1983.

11

[5] W. Kahan.IEEE Standard754for binaryfloating-pointarithmetic.Lecturenoteson thestatusof IEEE
754,May 1996.

[6] M. L. Overton.NumericalComputingwith IEEE FloatingPoint Arithmetic. SIAM, 2001.

[7] N. R. Scott.ComputerNumberSystems& Arithmetic. PrenticeHall, 1985.

[8] C. Severance.An interview with theold manof floating-point.IEEEComputer, March1998.

[9] J. R. Shewchuk. Robust adaptive floating-pointgeometricpractices. In Proceedingsof the Twelfth
AnnualSymposiumonComputationalGeometry, pages141–150,May 1996.

12

